Math, asked by Adyashapradhan245, 1 month ago

if p and q are the roots ofbthe equation x^2 - px + q = 0 then
a) p = 1 , q = -2
b) p = 0 , q= 1
c) p = -2 , q = 0
d) p= -2 , q =1​

Answers

Answered by karakacharmi
0

Answer:

I think the answer is option c

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:p \: and \: q \: are \: roots \: of \:  {x}^{2} - px + q = 0

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:pq = \dfrac{q}{1}

\bf\implies \:pq = q

\bf\implies \:\boxed{ \tt{ \: p = 1 \: }}

Also,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:p + q =  - \dfrac{( - p)}{1}

\bf\implies \:p + q =p

\bf\implies \:q =0

Hence,

\begin{gathered}\begin{gathered}\bf\: \bf\implies \:\begin{cases} &\sf{p = 1} \\  \\ &\sf{q = 0} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d = 0, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta  +   \beta  \gamma   + \gamma   \alpha =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions