Math, asked by manasvirrmps, 5 days ago

If p and q are the zeroes of 3x²-6x+4 , then value of p²+q² is


pls answer fast

Answers

Answered by SparklingBoy
14

\large \bf \clubs \:  Given  :-

p and q are the zeroes of 3x² - 6x + 4

-----------------------

\large \bf \clubs \: To  \: Find :-

  • Value of +

-----------------------

\large \bf \clubs \:   Main  \:  Concept :-

✏ 1》For a qudratic Polynomial of the Form ax² + bx + c :-

  • Sum of Zeros =  \sf-\dfrac{b}{a}

  • Product of Zeros = \sf\dfrac{c}{a}

-----------------------

\large \bf \clubs \:  Solution  :-

For Polynomial is 3x² - 6x + 4 :

 \text{Sum of Zeros}  =  -  \bigg( \dfrac{ -6 }{3}   \bigg)

 \large :\longmapsto\bf p  + q = 2 \:  \:  -  -    - (1)

 \text{Product of Zeros} =  \dfrac{4}{3}

 \large:\longmapsto \bf pq =  \dfrac{4}{3}  \:  \:  -  -  - (2)

\Large\text{Now,}

\large \sf{p^2+ q^2}

\large =  \sf{p^2 +q ^2+ 2pq} -  \text{2pq}

 \large=  \sf{(p + q)^2} - 2 \text{pq}

Using (1) and (2)

 = {2}^{2}  - 2 \times  \dfrac{4}{3}

 = 4 -  \dfrac{8}{3}

 =  \dfrac{12 - 8}{3}

 =  \dfrac{4}{3}

Hence,

  \Large \underline{ \pink{ \underline{ \pmb{ \frak{p^2+q^2 =  \dfrac{4}{3} }}}}}

 \Large\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer}}

-----------------------

Answered by BrainlyArnab
6

\huge { \red{ \boxed{ \green { \boxed{ \color{yellow}{ \boxed{ \color{silver}{ \boxed{ \pink { \boxed{ \color{skyblue}{ \boxed{  \color{maroon}{ \boxed{\bf \blue{ \frac{4}{3}  }}}}}}}}}}}}} }}}

Step-by-step explanation:

QUESTION :-

If p and q are the zeroes of 3x² - 6x + 4, then the value of p² + is

_______________________

SOLUTION :-

3x² - 6x + 4

In the standard form of quadratic equation, here

  • a = 3
  • b = - 6
  • c = 4

We know that,

Sum of zeroes (p + q) =  \bf \dfrac{-b}{a}

And,

Product of zeroes (pq) =  \bf \dfrac{c}{a}

________________________

So,

here

Sum of zeroes =  \bf \dfrac{-b}{a} \\

 \\  \bf =  >  \frac{ - ( - 6)}{3}  \\  \\  \bf =  > \cancel{  \frac{6}{3} } {}^{2}

So,

Sum of zeroes (p + q) = 2

And,

Product of zeroes =  \bf \dfrac{c}{a} \\

  \\  \bf =  >  \frac{4}{3}   \\

So,

Product of zeroes =  \bf \dfrac{4}{3}

________________________

Now,

+

=> (p + q)² - 2pq ...[using identity + = (a + b)²-2ab]

 \\

[put the value of (p + q) and pq]

 \\  \bf =  >  {(2)}^{2}  - 2 (\frac{4}{3} ) \\  \\  =  >  \bf4 -  \frac{8}{3}  \\  \\  \bf =  >  \frac{(4 \times 3) - 8}{3}  \\  \\  \bf =  >  \frac{12 - 8}{3}  \\  \\  \bf =  >  \red{ \frac{4}{3} }

So,

+ =  \bf \dfrac{4}{3}

_______________________

Hope it helps.

#BeBrainly :-)

Similar questions