If p and q are the zeroes of 7x2
-49x +(5k+4). Also 4p +3q =24,
then find the value of k.
Answers
Answered by
0
Answer:
k = 1.6
Step-by-step explanation:
Given polynomial: 7x² - 49x + ( 5k + 4 ) = 0
We know that in a quadratic ax² + bx + c = 0, the sum of zeroes is -b/a
So, sum of zeroes in given the quadratic = -b/a = - (-49)/7 = 49/7 = 7
i.e., p + q = 7 ⇒ 3 ( p + q ) = 3 ( 7 ) ⇒ 3p + 3q = 21
Given, 4p + 3q = 24
⇒ p + 3p + 3q = 24
⇒ p + 21 = 24
⇒ p = 24 - 21
⇒ p = 3
p + q = 7 ⇒ 3 + q = 7 ⇒ q = 7 - 3 ⇒ q = 4
We know that in the quadratic ax² + bx + c = 0, product of roots = c/a
So, product of roots in given polynomial = c/a = (5k + 4)/7
i.e., p x q = 5k + 4
⇒ 3 x 4 = 5k + 4
⇒ 12 = 5k + 4
⇒ 5k = 12 - 4
⇒ 5k = 8
⇒ k = 8/5 = 1.6
⇒ k = 1.6
Hope it helps!!! Please mark Brainiest!!!
Similar questions