Math, asked by sameersm2004, 10 months ago

if P and Q are the zeroes of the polynomial ax2+bx+c find the values of p2 +q2

Answers

Answered by abarkhasoni0425
7

this is ur solution...

Attachments:
Answered by mysticd
11

 Given \: p \: and \: q \: are \: the \: zeroes

 of \: the \: polynomial \:ax^{2}+bx+c

 i) Sum \:of \: zeroes = \frac{- x \: Coefficient }{x^{2} \: Coefficient }

 \implies p+q = \frac{-b}{a} \: --(1)

 ii) Product \:of \: zeroes = \frac{Constant \:term }{x^{2} \: Coefficient }

 \implies pq = \frac{c}{a} \: --(2)

 Now, \red{ Value \: of \: p^{2} + q^{2}}

 = ( p + q )^{2} - 2pq

 = \Big( \frac{-b}{a}\Big)^{2} - 2 \times \frac{c}{a}

 = \frac{ b^{2} - 2ac}{a^{2}}

Therefore.,

 \red{ Value \: of \: p^{2} + q^{2}}

\green { = \frac{ b^{2} - 2ac}{a^{2}}}

•••♪

Similar questions