if p and q are the zeros of quadratic polynomial f(x)= ax^2 +bx +c then evaluate 1/p - 1/q.
Answers
Answered by
2
Answer:
√(b^2 - 4ac) /c
Step-by-step explanation:
ax^2 +bx +c =0
or, x^2 + (b/a) x +c/a=0
if p and q are zeros of quadretic polynomial
then, p+q = - b/a and pq = c/a
now, (p+q)^2 = b^2/a^2
or,( q-p)^2 +4pq = b^2/a^2
or,( q-p)^ =( b^2/a^2)- 4* c/a
or, (q-p)^2 = (b^2-4ac)/a^2
or, q-p = √(b^2-4ac)/a
therefore, 1/p - 1/q = (q-p)/pq
= √(b^2 -4ac) / a * c/a
= √(b^2-4ac)/c
Similar questions