Math, asked by kandhasrinivas, 2 months ago

If p and q are the zeros of the polynomial f(x) =2x²-7x+3 ,find the value of p²+q²

Answers

Answered by CuteAnswerer
8

GIVEN :

  • \bf {2x^2-7x + 3} , where p and q are the zeros of the given polynomial.

TO FIND :

  • The value of p²+q².

SOLUTION :

Finding p and q :

:\implies \sf{2x^2 -7x + 3 = 0} \\ \\

  • By middle term splitting :

:\implies \sf{2x^2-6x-x+3= 0} \\ \\

:\implies \sf{2x \bigg(x -3 \bigg)-1\bigg(x-3\bigg) = 0} \\ \\

 :\implies \sf{\bigg(x-3 \bigg) \bigg(2x -1\bigg) = 0} \\ \\

:\implies \sf{\bigg(x-3 \bigg) = 0 \: , \: \bigg(2x -1 \bigg) = 0} \\ \\

 :\implies\sf{x = 0 + 3 \: , \: 2x = 0+1} \\ \\

 :\implies\sf{x =  3 \: , \: 2x = 1} \\ \\

\leadsto\underline{\huge{\boxed{\blue{\bf{x = 3\: , \: x = \dfrac {1}{2}}}}}}

Here,

  • p = 3 and q = \bf {\dfrac {1}{2}}

Finding p²+q² :

: \leadsto \sf{ p^2  +  q^2} \\  \\

: \leadsto \sf{ (3)^2  +    {\left(\dfrac{1}{2}  \right)}^{2}} \\  \\

: \leadsto \sf{ 9  +\dfrac{1}{4} } \\  \\

: \leadsto \sf{ \dfrac{36 + 1}{4} } \\  \\

 \mapsto   \underline{ \huge{ \purple{\boxed{\bf{ \dfrac{37}{4} }}}}} \\  \\

\huge{\pink{\therefore}} The value of p²+q² is  \bf{ \dfrac{37}{4}}.


mddilshad11ab: Perfect¶
Similar questions