Math, asked by sayranafees158jhs, 1 month ago

If p and q are the zeros of the polynomial f(x)= x^2 -5x +1, then find the value of (p^2)q + p(q^2).​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:p \: and \: q \: are \: zeroes \: of \: the \: polynomial \:  {x}^{2} - 5x + 1

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:pq = \dfrac{1}{1}  = 1

And

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:p + q =  -  \: \dfrac{( - 5)}{1}  = 5

Now, Consider

\rm :\longmapsto\: {p}^{2}q +  {qp}^{2}

\rm \:  =  \:pq(p + q)

\rm \:  =  \:1 \times 5

\rm \:  =  \:5

Hence,

\rm :\longmapsto\: \boxed{ \bf \:{p}^{2}q +  {qp}^{2}  = 5}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta   + \beta  \gamma  +  \gamma  \alpha  = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions