Math, asked by aquafreshall, 1 year ago

If P and Q are two points whose co-ordinates are (at square,2at) &(a/t square,2a/t) respectively &S is in the point (a,0). Show that 1/Sp + 1/SQ is independent of't'? plzzzz answer this immediately it's urgent tomorrow is my exam ​

Answers

Answered by Anonymous
2

Answer:

Refers to attachmnets...

Attachments:
Answered by Anonymous
4

Solution

P(at²,2at)

Q(a/,2a/t)

and

S(a,0)

now...

sp =  \sqrt{(a - at {}^{2}) {}^{2}  + (0 - 2at) {}^{2}  }  \\  =  > sp =  \sqrt{a {}^{2} (1 - t {}^{2} ) {}^{2}  + a {}^{2}(4t {}^{2} ) }  \\  =  > sp = a \sqrt{1  + t {}^{4}  - 2t {}^{2}  + 4t {}^{2} }  \\  =  > sp =a  \sqrt{1 + 2t {}^{2}  + t {}^{4} }  \\  =  > sp = a \sqrt{(1 + t {}^{2} ) {}^{2} }  \\  =  > sp = a(1 + t {}^{2} )

and..

sq =  \sqrt{(a -  \frac{a}{t {}^{2} }) {}^{2}  + (0 -  \frac{2a}{t}) {}^{2}   } \\  =  > sq = a \sqrt{ \frac{(t {}^{2}  - 1) {}^{2} }{t {}^{4} } +  \frac{4}{t {}^{2} }  }   \\  =  > sq = a \sqrt{ \frac{t {}^{4} + 1  - 2t {}^{2} +  4t {}^{2}  }{t  ^{4} } }  \\  =  > sq =  \frac{a}{t {}^{2} }   \sqrt{(1 + t {}^{2} ) {}^{2} }  \\  =  > sq =  \frac{a(1 + t {}^{2}) }{t {}^{2} }

now....

 =  \frac{1}{sp}  +  \frac{1}{sq}  \\  =  \frac{1}{a(1 + t {}^{2} )}  +  \frac{t {}^{2} }{a(1 + t {}^{2}) }  \\  =  \frac{(1 + t {}^{2}) }{a(1 + t {}^{2}) }  \\  =  \frac{1}{a}  \\ i.e. \: independent \: of \: t \: (proved)

hope this helps you ✌️

Similar questions