Math, asked by karshpreet923, 2 months ago

.If p and q are zeroes of x2 + 5x + 8, find p+q
please help me​

Answers

Answered by BrainlyMilitary
20

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆ GIVEN POLYNOMIAL : x² + 5x + 8

Given that ,

⠀⠀⠀⠀⠀⠀⠀p and q are zeroes of Polynomial .

⠀⠀⠀⠀⠀⠀⠀Finding value of p + q :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar\:\:\bf  Sum \:of \: zeroes\:\::

\qquad \dag\:\:\bigg\lgroup \sf{ p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} }\bigg\rgroup \\\\

\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:}\\ \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\

\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} \\\\

\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ 5 \:)\:}{ 1  \:} \\\\

\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: - 5 \:\:}{ 1  \:} \\\\

\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \: - 5 \:\: \\\\

\qquad \dashrightarrow \underline{\pmb{\purple{\:p + q \: \: = \:\: \: - 5 \:\:\:  }} }\:\bigstar \\\\

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \:Hence,\:The\:value  \:of\: p + q  \:is\:\bf -5 }.}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \qquad \boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:Quadratic \:Polynomial \::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\&\;\: \beta\:\:} \\\\ 1)\:\: \alpha + \beta \: =\:\dfrac{-b}{a} \quad \bigg\lgroup \bf Sum\:of\;Zeroes \bigg\rgroup \\\\ 2)\:\: \alpha \times \beta \: =\:\dfrac{c}{a} \quad \bigg\lgroup \bf Product \:of\;Zeroes \bigg\rgroup \\\\ \end{array}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by Anonymous
1

\huge\bf\fbox\red{Answer:-}

⠀☆ GIVEN POLYNOMIAL : x² + 5x + 8

Given that ,

⠀⠀⠀⠀⠀⠀⠀p and q are zeroes of Polynomial .

⠀⠀⠀⠀⠀⠀⠀Finding value of p + q :

\begin{gathered}\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar\:\:\bf Sum \:of \: zeroes\:\:: \end{gathered}

\begin{gathered}\qquad \dag\:\:\bigg\lgroup \sf{ p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} }\bigg\rgroup \\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:}\\ \\\end{gathered}

⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} \\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ 5 \:)\:}{ 1 \:} \\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: - 5 \:\:}{ 1 \:} \\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \: - 5 \:\: \\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \underline{\pmb{\purple{\:p + q \: \: = \:\: \: - 5 \:\:\: }} }\:\bigstar \\\\\end{gathered}

⠀⠀⠀⠀⠀\begin{gathered}\therefore {\underline{ \sf \:Hence,\:The\:value \:of\: p + q \:is\:\bf -5 }.}\\\\\end{gathered}

Similar questions