If p cos θ + q sin θ = u and p sin θ -q cos θ = v; Prove that u2+ v2= p2+q2
Answers
Answered by
1
Required Answer:-
Given:
- u = p cos θ + q sin θ
- v = p sin θ -q cos θ
To prove:
- u² + v² = p² + q²
Proof:
Taking LHS,
u² + v²
= (p cos θ + q sin θ)² + (p sin θ -q cos θ)²
= p² cos²θ + q² sin²θ + 2pq cosθ sinθ + p² sin²θ + q² cos²θ - 2pq cosθ sinθ
= p² sin²θ + p² cos²θ + q² sin²θ + q² cos²θ
= p²(sin²θ + cos²θ) + q²(sin²θ + cos²θ)
We know that,
➡ sin²θ + cos²θ = 1
So,
p²(sin²θ + cos²θ) + q²(sin²θ + cos²θ)
= p² × 1 + q² × 1
= p² + q²
= RHS (Hence Proved)
Formula used:
- sin²θ + cos²θ = 1 (0° ≤ θ ≤ 90°)
More Formula:
- cosec²θ - cot²θ = 1 (0° ≤ θ ≤ 90°)
- sec²θ - tan²θ = 1 (0° ≤ θ ≤ 90°)
- sin(90° - θ) = cosθ
- cosec(90° - θ) = secθ
- tan(90° - θ) = cotθ
Similar questions