If P = cos theta + i sin theta, q = cos phi+ i sin phi, show that (p+q)/(p-q)=i tan (theta-phi)/2
Answers
Answer:
cos
is your answer
The result is proofed.
As per question we need to find (p+q)/(p-q)=i tan (theta-phi)/2.
The given data is P = cos theta + i sin theta, q = cos phi+ i sin phi.
Now let
P = cosθ + i sinθ..............(1)
q= cos∅+ i sin∅...........(2)
Now we add equation (1) and equation (2) we get
P +q= cosθ + i sinθ + cos∅+ i sin∅,
= cosθ + cos∅ + i sinθ + i sin∅,
= ( cosθ + cos∅ ) + i ( sinθ + sin∅ ),
= 2cos(∅+θ)/2*cos(θ-∅)/2 + i {2sin(∅+θ)/2 *sin(θ-∅)/2}
= 2{cos(∅+θ)/2*cos(θ-∅)/2 + i {sin(∅+θ)/2 *sin(θ-∅)/2}}.........(3)
Now subtract the equation (2) from equation (1)
P -q = cosθ + i sinθ -(cos∅+ i sin∅),
= cosθ - cos∅ + i sinθ- i sin∅
= ( cosθ - cos∅) +i ( sinθ -sin∅)
= -2sin(∅+θ)/2 *sin(θ-∅)/2 + i{ 2cos(∅+θ)/2*sin(θ-∅)/2}
=-2{ sin(∅+θ)/2 *sin(θ-∅)/2 + i{ cos(∅+θ)/2*sin(θ-∅)/2}}......(4)
Now we divide equation (3) by equation (4)
=i tan(θ-∅)/2
Hence the result is proofed.
To learn more about trigonometry follow the given link
https://brainly.in/question/23142213?
#SPJ3