Math, asked by Shreya268, 1 year ago

if p cot theta = whole root of q^2- p^2, then find the value of sin theta

Answers

Answered by Divyansh619
33

Answer:This may help

Step-by-step explanation:

Attachments:
Answered by wifilethbridge
40

Answer:

sin\theta=\frac{p}{q}

Step-by-step explanation:

Given : {\text{p cot} \theta= \sqrt{q^2-p^2}

To Find : Sin \theta

Solution:

cot \theta= \frac{\sqrt{q^2-p^2}}{p}

Squaring both sides

cot^2 \theta= \frac{q^2-p^2}{p^2}

Identity : cot^2 \theta = Cosec^2 \theta - 1

So,  Cosec^2 \theta - 1= \frac{q^2-p^2}{p^2}

 Cosec^2 \theta= \frac{q^2-p^2}{p^2}+1

 Cosec^2 \theta= \frac{q^2-p^2+p^2}{p^2}

 Cosec^2 \theta= \frac{q^2}{p^2}

Property : cosec \theta = \frac{1}{sin\theta}

So,  \frac{1}{sin^2\theta}= \frac{q^2}{p^2}

sin^2\theta= \frac{p^2}{q^2}

sin\theta=\sqrt{ \frac{p^2}{q^2}}

sin\theta=\frac{p}{q}

Hence sin\theta=\frac{p}{q}

Similar questions