Math, asked by anitadevisingh86, 8 months ago

If p(E) xp(Ebaar) =2/3; p(E) p(E) are roots of quadratic equation in x find the quadratic equation​

Answers

Answered by zeninlock
1

Answer:

djdjjsjsjsjjsjsksiisisiiia

Answered by shirshaPradhan
0

Px(x-3) + 9 = 0

Px(x-3) + 9 = 0px2-3px+9=0

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)=9p2-36p

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)=9p2-36pfor having equal roots

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)=9p2-36pfor having equal roots b2-4ac = 9p2-36p = 0

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)=9p2-36pfor having equal roots b2-4ac = 9p2-36p = 09p2-36p = 0

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)=9p2-36pfor having equal roots b2-4ac = 9p2-36p = 09p2-36p = 09p(p-4) = 0

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)=9p2-36pfor having equal roots b2-4ac = 9p2-36p = 09p2-36p = 09p(p-4) = 09p=0 (or) p-4=0

Px(x-3) + 9 = 0px2-3px+9=0a=p , b=-3p , c=9b2-4ac= (-3p)2-4(p)(9)=9p2-36pfor having equal roots b2-4ac = 9p2-36p = 09p2-36p = 09p(p-4) = 09p=0 (or) p-4=0p=0(rejected) or p=4

please follow me if it helps

Similar questions