Physics, asked by parilaamitdesai27, 10 months ago

If p=i-2k and q=-3i+j+k find angle between p+q and p-q

Answers

Answered by tanejakca
1
P+q=4i+j-k
P-q= 4i-j-3k
CosA= (16-1+3)/square root of 18*26
18/_|18*26 so3/_| 13
Answered by hotelcalifornia
0

Given:

P=i-2k

Q=-3i+j+k

To find:

The angle between P+Q and P-Q.

Solution:

We have, P=i-2k and Q=-3i+j+k .

Hence,

P+Q=(i-2k)+(-3i+j+k)

    A    =-2i+j-k           ; and

P-Q=i-2k-(-3i+j+k)

           =i-2k+3i-j-k

    B    =4i-j-3k

We know, for any vectors A and B,

cos\alpha =\frac{vec(A).vec(B)}{|vec(A)||vec(B)|}

Hence,

cos\alpha =\frac{(-2i+j-k).(4i-j-3k)}{|-2i+j-k||4i-j-k|}

cos\alpha =\frac{-8-1+3}{\sqrt{(-2)^{2}+ (1)^{2}+ (-1)^{2} } \sqrt{(4)^{2}+ (-1)^{2} +(-1)^{2} } }

cos\alpha =\frac{-6}{\sqrt{4+1+1} \sqrt{(16+1+1)} }

cos\alpha =\frac{-6}{\sqrt{6} \sqrt{18} }

cos\alpha =\frac{-6}{6\sqrt{3} }

cos\alpha =\frac{-1}{\sqrt{3} }

\alpha =cos^{-1}(\frac{-1}{\sqrt{3} }  )

Final answer:

Hence, the angle between P+Q and P-Q  is cos^{-1}(\frac{-1}{\sqrt{3} }  ).

Similar questions