Math, asked by babulgogoi173, 6 months ago

if p is a prime number and p divides b² where b is a +ve integer, then ​

Answers

Answered by mysticd
3

 \pink{ Theorem : }}

Let 'p' be a prime number. If 'p' divides , where b is a positive integer,then p divides b.

 \green{ Proof : }}

 Let \: p_{1}, p_{2}, p_{3}, \ldots , p_{n} \:be \\the \: factors \: of \: b .

 \implies b = p_{1} p_{2} p_{3}\ldots p_{n}\\where \: p_{1}, p_{2}, p_{3}, \ldots , p_{n}\: are \\prime \:not \: necessarily \: all \: distinct .

 \therefore ( p_{1} p_{2} p_{3}\ldots p_{n})(p_{1} p_{2} p_{3}\ldots p_{n})\\= p_{1}^{2}\cdot p_{2}^{2}\cdot p_{3}^{2}\ldots \cdot p_{n}^{2}\\p \: divides \: b^{2} \: ---(1)

 \implies p \:is \: a \: prime \:factor \: of \: b^{2}

 ( from \: fundamental \: theorem \: of \\ arithmetic)

 The \:prime \:factors \:of \:b^{2} \:are \:only \\p_{1}, p_{2}, p_{3}, \ldots , p_{n}\:-----(2)

 ( Uniqueness \: of \:factors \:of \\ fundamental\: theorem \:of \: arithmetic )

 From \: (1);\:and \: (2) , we \:have \:'p' \:is \:a \\prime \:factor \:of \: p_{1}, p_{2}, p_{3}, \ldots , p_{n}

 \green { p \: divides \: b }

•••♪

Similar questions