If P is any point on hyperbola whose axis are equal,prove that SP.S'P=CP2 ?
Answers
Answered by
17
✔️For hyperbola .....
➖if the length of semi transverse and semi conjugate axes are equal.
Then a = b
∴ Equation of the given hyperbole is
x2 – y2 = a2 ......(1)
✔️Coordinates of any point P on hyperbole be (α, β). Since P lies on (1)
∴ α2 – β2 = a2 ......(2)
➖➖⏹Refer attachment⏹➖➖
➖Now.....,
SP2 .S'P2 = (2a2 + a2 + β2)2 – 8a2α2
= 4a4 + 4a2 (α2 + β2) + (α2 + β2)2 – 8a2α2
= 4a2 (a2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= 4a2 (α2 – β2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= (α2+ β2)2 = CP4
∴ SP. S'P = CP2
✔️✔️hence proved !
➖if the length of semi transverse and semi conjugate axes are equal.
Then a = b
∴ Equation of the given hyperbole is
x2 – y2 = a2 ......(1)
✔️Coordinates of any point P on hyperbole be (α, β). Since P lies on (1)
∴ α2 – β2 = a2 ......(2)
➖➖⏹Refer attachment⏹➖➖
➖Now.....,
SP2 .S'P2 = (2a2 + a2 + β2)2 – 8a2α2
= 4a4 + 4a2 (α2 + β2) + (α2 + β2)2 – 8a2α2
= 4a2 (a2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= 4a2 (α2 – β2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= (α2+ β2)2 = CP4
∴ SP. S'P = CP2
✔️✔️hence proved !
Attachments:
Answered by
2
Answer:
For hyperbola :-
➡if the length of semi transverse and semi conjugate axes are equal.
Then a = b
∴ Equation of the given hyperbole is
x2 – y2 = a2 ......(1)
✔️Coordinates of any point P on hyperbole be (α, β). Since P lies on (1)
∴ α2 – β2 = a2 ......(2)
Refer Attachment✌
➡Now.....,
SP2 .S'P2 = (2a2 + a2 + β2)2 – 8a2α2
= 4a4 + 4a2 (α2 + β2) + (α2 + β2)2 – 8a2α2
= 4a2 (a2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= 4a2 (α2 – β2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= (α2+ β2)2 = CP4
∴ SP. S'P = CP2
Attachments:
Similar questions