Math, asked by meena2691, 1 year ago

If P is any point on hyperbola whose axis are equal,prove that SP.S'P=CP2 ?

Answers

Answered by NidhraNair
17
✔️For hyperbola .....

➖if the length of semi transverse and semi conjugate axes are equal.

Then a = b

∴ Equation of the given hyperbole is

x2 – y2 = a2  ......(1)

✔️Coordinates of any point P on hyperbole be (α, β). Since P lies on (1)

∴ α2 – β2 = a2    ......(2)

➖➖⏹Refer attachment⏹➖➖

➖Now.....,

SP2 .S'P2 = (2a2 + a2 + β2)2 – 8a2α2

= 4a4 + 4a2 (α2 + β2) + (α2 + β2)2 – 8a2α2

= 4a2 (a2  – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2

= 4a2 (α2  –  β2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2

= (α2+ β2)2 = CP4

∴ SP. S'P = CP2

✔️✔️hence proved !
Attachments:
Answered by chica32
2

Answer:

For hyperbola :-

➡if the length of semi transverse and semi conjugate axes are equal.

Then a = b

∴ Equation of the given hyperbole is

x2 – y2 = a2  ......(1)

✔️Coordinates of any point P on hyperbole be (α, β). Since P lies on (1)

∴ α2 – β2 = a2    ......(2)

Refer Attachment✌

➡Now.....,

SP2 .S'P2 = (2a2 + a2 + β2)2 – 8a2α2

= 4a4 + 4a2 (α2 + β2) + (α2 + β2)2 – 8a2α2

= 4a2 (a2  – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2

= 4a2 (α2  –  β2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2

= (α2+ β2)2 = CP4

∴ SP. S'P = CP2

Attachments:
Similar questions