Math, asked by tejalpankhiwala2990, 10 months ago

If P is equal to 5 minus 2 root 6 then find p square + 1 by p square

Answers

Answered by himanshimn14340
8

Answer:

14 - 8√6 / 25 - 8√6

Step-by-step explanation:

Given :- P = 5 - 2√6..........(i)

To find :- P² + 1 / P²

Proof :- Substitute the value of p

(5 - 2√6)² + 1 / (5 - 2√6)²

(5)² - 2×2×2√6 - (2√6)² + 1 / (5)² - 2×2×2√6

25 - 8√6 - 12 + 1 / 25 - 8√6

25 - 12 + 1 - 8√6 / 25 - 8√6

13 + 1 - 8√6 / 25 - 8√6

14 - 8√6 / 25 - 8√6

I hope it helps.....

Answered by harendrachoubay
18

p^{2} +\dfrac{1}{p^2}  = 98

Step-by-step explanation:

We have,

P = 5-2\sqrt{6}

To find, the value of p^{2} +\dfrac{1}{p^2} = ?

P = 5-2\sqrt{6}

\dfrac{1}{p}=\dfrac{1}{5-2\sqrt{6}}

Rationalising numerator and denominator, we get

\dfrac{1}{p}=\dfrac{1}{5-2\sqrt{6}}\times \dfrac{5+2\sqrt{6}}{5+2\sqrt{6}}

\dfrac{1}{p}=\dfrac{5+2\sqrt{6}}{5^2-(2\sqrt{6})^2}

\dfrac{1}{p}=\dfrac{5+2\sqrt{6}}{25-24}

\dfrac{1}{p}=5+2\sqrt{6}

p^{2} +\dfrac{1}{p^2}

= (5-2\sqrt{6})^2+(5+2\sqrt{6})^2

Using the algebraic identity,

(a+b)^{2} +(a-b)^{2}=2(a^2+b^2)

= 2[5^2+(2\sqrt{6)^2]

= 2[25 + 4(6)]

= 2(25 + 24)

= 2(49)

= 98

p^{2} +\dfrac{1}{p^2}  = 98

Similar questions