If p is equals to root 7 minus root 5 by root 7 + root 5 and q is equals to root 7 + root 5 by root 7 + root 5 find the value of p square minus q squared
Answers
Here is the answer you were looking for:
Hope this helps!!
If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.
@Mahak24
Thanks...
☺☺
Things to know before solving this question,
[tex\underline{\sf{\bigstar\:Rationalising\:the\:denominator\:of\:\frac{7 + \sqrt{5}}{7 - \sqrt{5}}\::}}
\\ \\ \sf \dfrac{7 + \sqrt{5}}{7 - \sqrt{5}} \:\times\:\dfrac{7 + \sqrt{5}}{7 + \sqrt{5}} \\ \\ \sf \dfrac{(7 + \sqrt{5})^2}{(7)^2 - (\sqrt{5})^2} \\ \\ \sf \dfrac{(7)^2 + (\sqrt{5})^2 + 2(7)(\sqrt{5})}{49 - 5} \\ \\ \sf \dfrac{49 + 5 + 14\sqrt{5}}{44} \\ \\ \sf\pink{\dfrac{54 + 14\sqrt{5}}{44}}[/tex]
[tex\underline{\sf{\bigstar\:Rationalising\:the\:denominator\:of\:\frac{7 - \sqrt{5}}{7 + \sqrt{5}}\::}}
\\ \\ \sf \dfrac{7 - \sqrt{5}}{7 + \sqrt{5}} \:\times\:\dfrac{7 - \sqrt{5}}{7 - \sqrt{5}}\\ \\ \sf \dfrac{(7 - \sqrt{5})^2}{(7)^2 - (\sqrt{5})^2}\sf \dfrac{(7)^2 + (\sqrt{5})^2 - 2(7)(\sqrt{5})}{49 - 5} \\ \\ \sf \dfrac{49 + 5 - 14\sqrt{5}}{44} \\ \\ \sf\pink{\dfrac{54 - 14\sqrt{5}}{44}} \\ \\ \sf \dashrightarrow\:\dfrac{54 + 14\sqrt{5}}{44} - \dfrac{54 - 14\sqrt{5}}{44} = p - 7\sqrt{5}q[/tex]
Calculating value of p and q,