Math, asked by Akshaykanojiy1658, 1 year ago

If p is equals to root 7 minus root 5 by root 7 + root 5 and q is equals to root 7 + root 5 by root 7 + root 5 find the value of p square minus q squared

Answers

Answered by DaIncredible
31
Hey friend,
Here is the answer you were looking for:

p =  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\ p =  \frac{ \sqrt{7} -  \sqrt{5}  }{ \sqrt{7} +  \sqrt{5}  }  \times  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}   -  \sqrt{5} }  \\  \\ using \: the \: identity \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  p =  \frac{ {( \sqrt{7}) }^{2}  +  {( \sqrt{5} )}^{2}   - 2( \sqrt{7})( \sqrt{5})  }{ {( \sqrt{7} )}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\ p =  \frac{7 + 5 - 2 \sqrt{35} }{7 - 5}  \\  \\ p =  \frac{12 - 2 \sqrt{35} }{2}  \\  \\ p = 6 -  \sqrt{35}  \\  \\ q =  \frac{ \sqrt{7}   +   \sqrt{5} }{ \sqrt{7}   -   \sqrt{5} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\ q =  \frac{ \sqrt{7}  +   \sqrt{5}  }{ \sqrt{7}  -   \sqrt{5}  }  \times  \frac{ \sqrt{7}   +   \sqrt{5} }{ \sqrt{7}    +   \sqrt{5} }  \\  \\ using \: the \: identity \\  {(a  +  b)}^{2}  =  {a}^{2}  +  {b}^{2}   +  2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  q =  \frac{ {( \sqrt{7}) }^{2}  +  {( \sqrt{5} )}^{2}    +  2( \sqrt{7})( \sqrt{5})  }{ {( \sqrt{7} )}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\ q =  \frac{7 + 5  +  2 \sqrt{35} }{7 - 5}  \\  \\ q =  \frac{12  +  2 \sqrt{35} }{2}  \\  \\ q = 6  +   \sqrt{35}  \\  \\ now \\  {p}^{2}  -  {q}^{2}  \\  \\  =  {(6 -  \sqrt{35}) }^{2}  -  {(6 +  \sqrt{35}) }^{2}  \\  \\  = ( {(6)}^{2}  +  {( \sqrt{35}) }^{2}  - 2(6)( \sqrt{35} )) -  ( {(6)}^{2}  +  {( \sqrt{35}) }^{2}   +  2(6)( \sqrt{35} )) \\  \\  = (36 + 35 - 12 \sqrt{35} ) - (36 + 35 + 12 \sqrt{35} ) \\  \\  = 71 - 12 \sqrt{35}  - 71  - 12 \sqrt{35}  \\  \\  =  - 12 \sqrt{35}  - 12 \sqrt{35}  \\  \\  =  - 24 \sqrt{35}

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Answered by WildCat7083
218

\large\underline{\sf{\green{Solution}}}

\large \bold{@WildCat7083}

Things to know before solving this question,

\underline{\boxed{\sf{(a + b)(a - b) = a^2 - b^2}}} \\ \underline{\boxed{\sf{(a + b)^2 = a^2 + b^2 + 2ab}}} \\ \underline{\boxed{\sf{(a - b)^2 = a^2 + b^2 - 2ab}}} \\ ━━━━━━━

[tex\underline{\sf{\bigstar\:Rationalising\:the\:denominator\:of\:\frac{7 + \sqrt{5}}{7 - \sqrt{5}}\::}}

\\ \\ \sf \dfrac{7 + \sqrt{5}}{7 - \sqrt{5}} \:\times\:\dfrac{7 + \sqrt{5}}{7 + \sqrt{5}} \\ \\ \sf \dfrac{(7 + \sqrt{5})^2}{(7)^2 - (\sqrt{5})^2} \\ \\ \sf \dfrac{(7)^2 + (\sqrt{5})^2 + 2(7)(\sqrt{5})}{49 - 5} \\ \\ \sf \dfrac{49 + 5 + 14\sqrt{5}}{44} \\ \\ \sf\pink{\dfrac{54 + 14\sqrt{5}}{44}}[/tex]

[tex\underline{\sf{\bigstar\:Rationalising\:the\:denominator\:of\:\frac{7 - \sqrt{5}}{7 + \sqrt{5}}\::}}

\\ \\ \sf \dfrac{7 - \sqrt{5}}{7 + \sqrt{5}} \:\times\:\dfrac{7 - \sqrt{5}}{7 - \sqrt{5}}\\ \\ \sf \dfrac{(7 - \sqrt{5})^2}{(7)^2 - (\sqrt{5})^2}\sf \dfrac{(7)^2 + (\sqrt{5})^2 - 2(7)(\sqrt{5})}{49 - 5} \\ \\ \sf \dfrac{49 + 5 - 14\sqrt{5}}{44} \\ \\ \sf\pink{\dfrac{54 - 14\sqrt{5}}{44}} \\ \\ \sf \dashrightarrow\:\dfrac{54 + 14\sqrt{5}}{44} - \dfrac{54 - 14\sqrt{5}}{44} = p - 7\sqrt{5}q[/tex]

Calculating value of p and q,

\sf \dashrightarrow\:\dfrac{54 + 14\sqrt{5} - (54 - 14\sqrt{5})}{44} = p - 7\sqrt{5}q \\  \\ \sf\dashrightarrow\:\dfrac{54 + 14\sqrt{5} - 54 + 14\sqrt{5}}{44} = p - 7\sqrt{5}q \\  \\ \sf \dashrightarrow\:\dfrac{54 - 54 + 14\sqrt{5} + 14\sqrt{5}}{44} = p - 7\sqrt{5}q \\  \\ \sf \dashrightarrow\:\dfrac{(14 + 14)\sqrt{5}}{44} = p - 7\sqrt{5}q \\  \\ \sf \dashrightarrow\:\dfrac{28\sqrt{5}}{44} = p - 7\sqrt{5}q \\  \\ \sf \dashrightarrow\:\dfrac{\cancel{28}\sqrt{5}}{\cancel{44}} = p - 7\sqrt{5}q \\  \\  \sf \dashrightarrow\:\dfrac{7\sqrt{5}}{11} = p - 7\sqrt{5}q \\  \\ \dashrightarrow\:\sf \red{p = 0}\:and\:\red{q = \dfrac{-1}{11}} \\  \\ \therefore\:{\underline{\sf{Value\:of\:p\:and\:q\:=\:\bf{0}\:\sf{and}\:\bf{\dfrac{-1}{11}}}}}

Similar questions