If p isa point on the altitude ad of triangle abc such that angle cbp=b/3 , then prove that ab = 2 sin/3
Answers
Answered by
0
Answer:
AD=csinB
In △BDP
tan 3B
= BDPD
PD=tan 3B
BD=ccosBtan 3B
AD=AP+PD
csinB=AP+ccosBtan 3B
AP=csinB−ccosBtan 3B
AP= cos 3Bccos 3B
sinB−ccosBsin 3B
AP= cos 3Bcsin 32B
=2sin 3B
Similar questions