Math, asked by nizam4, 1 year ago

if P minus 1 whole square + 2 minus 3 whole square + 8 minus 5 whole square + s minus 7 whole square = 0 then pqrs + 16 is equal to

Answers

Answered by doaemon
0
but then wer is q and r
Answered by Dachynna
1
(p-1)²+(2-3)²+(8-5)²+(s-7)²=0                then pqrs+16=0
SOLUTION:
(p-1)²+1+(-3)²+(s-7)²=0   
(p-1)²+(s-7)²+9=0
p²-2p+1 + s²-14s+49 +9=0
p²+s²-2p-14s+ 59=0
p(p-2)-s(s-14)+59
(p-2)(s-14)(p-s+59)=0
p=2; s=14; p-s=-59 
putting the value of p, s and neglecting the value of (p-s) 
Now 2*14*rs+16=0
rs=-16/28= - 4/7
then pqrs + 16=0 ....................................(i)
=>L.H.S=2*14*(-4/7) +16
=>L.H.S=4*(-4) +16
=> L.H.S=- 16+16=0
L.H.S=R.H.S
Proved

HOPE THIS HELPS YOU.
PLS comments & THANK YOU.
Similar questions