Math, asked by khushi15686, 9 hours ago

If P(n,r-1)/a = P(n,r)/b = P(n,r+1)/c, prove that b^2 = a(b + c)​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\dfrac{P(n, r - 1)}{a}  = \dfrac{P(n, r )}{b}  = \dfrac{P(n, r + 1)}{c} }

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: P(n, r) =  \frac{n!}{(n - r)!} \: }}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{n!}{a(n - r + 1)!} = \dfrac{n!}{b(n - r)!} = \dfrac{n!}{c(n - r - 1)!}

can be rewritten as on cancelation n!,

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)!} = \dfrac{1}{b(n - r)!} = \dfrac{1}{c(n - r - 1)!}

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)(n - r)(n - r - 1)!} = \dfrac{1}{b(n - r)(n - r - 1)!} = \dfrac{1}{c(n - r - 1)!}

can be further rewritten as on cancelation (n - r - 1)!,

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)(n - r)} = \dfrac{1}{b(n - r)} = \dfrac{1}{c}

So, Taking first and second member, we have

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)(n - r)} = \dfrac{1}{b(n - r)}

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)} = \dfrac{1}{b}

\bf :\longmapsto\:\dfrac{b}{a} = n - r + 1 -  -  - (1)

Now, Taking second and third member, we get

\rm :\longmapsto\:\dfrac{1}{b(n - r)} = \dfrac{1}{c}

\bf :\longmapsto\:\dfrac{c}{b} = n - r -  -  - (2)

On Substituting equation (2) in equation (1), we get

\bf :\longmapsto\:\dfrac{b}{a} =  \dfrac{c}{b}  + 1

\bf :\longmapsto\:\dfrac{b}{a} =  \dfrac{c + b}{b}

 \red{\rm \implies\:\boxed{ \tt{ \:  {b}^{2} = a(b + c) \: }}}

  • Hence, Proved

Answered by TanmayStatus
3

_______________________

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\dfrac{P(n, r - 1)}{a} = \dfrac{P(n, r )}{b} = \dfrac{P(n, r + 1)}{c} }

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: P(n, r) = \frac{n!}{(n - r)!} \: }}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{n!}{a(n - r + 1)!} = \dfrac{n!}{b(n - r)!} \rm :\longmapsto\:= \dfrac{n!}{c(n - r - 1)!}

can be rewritten as on cancelation n!,

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)!} = \dfrac{1}{b(n - r)!} \rm :\longmapsto\:= \dfrac{1}{c(n - r - 1)!}

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)(n - r)(n - r - 1)!}\rm :\longmapsto\: = \dfrac{1}{b(n - r)(n - r - 1)!}= \dfrac{1}{c(n - r - 1)!}

can be further rewritten as on cancelation (n - r - 1)!,

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)(n - r)} = \dfrac{1}{b(n - r)} = \dfrac{1}{c}

So, Taking first and second member, we have

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)(n - r)} = \dfrac{1}{b(n - r)}

\rm :\longmapsto\:\dfrac{1}{a(n - r + 1)} = \dfrac{1}{b}

\bf :\longmapsto\:\dfrac{b}{a} = n - r + 1 - - - (1)

Now, Taking second and third member, we get

\rm :\longmapsto\:\dfrac{1}{b(n - r)} = \dfrac{1}{c}

\bf :\longmapsto\:\dfrac{c}{b} = n - r - - - (2)

On Substituting equation (2) in equation (1), we get

\bf :\longmapsto\:\dfrac{b}{a} = \dfrac{c}{b} + 1

\bf :\longmapsto\:\dfrac{b}{a} = \dfrac{c + b}{b}

\red{\rm \implies\:\boxed{ \tt{ \: {b}^{2} = a(b + c) \: }}}

Hence, Proved

_______________________

I hope it's helps you ❤️.

Please markerd as brainliest answer ✌️✌️.

Similar questions