Math, asked by azadkachroo3853, 4 months ago

If p p=2-√3, find the value of p²+1/p²

Answers

Answered by vipashyana1
2

Answer:

  {p}^{2}  +  \frac{1}{ {p}^{2} }  = 14

Step-by-step explanation:

p = 2 -  \sqrt{3}  \\  {p}^{2}  +  \frac{1}{ {p}^{2} }  \\  =  {(2 -  \sqrt{3} )}^{2}  +  \frac{1}{ {(2 -  \sqrt{3}) }^{2} }  \\  = 4 + 3 - 4 \sqrt{3}  +  \frac{1}{4 + 3 - 4 \sqrt{3} }  \\  = 7 - 4 \sqrt{3}  +  \frac{1}{7 - 4 \sqrt{3} }  \\  =  \frac{ {(7 - 4 \sqrt{3} )}^{2} + 1 }{7 - 4 \sqrt{3} }  \\  =  \frac{49 + 48 - 56 \sqrt{3} + 1 }{7 - 4 \sqrt{3} }  \\  =  \frac{98 - 56 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  =  \frac{14(7 - 4 \sqrt{3}) }{(7 - 4 \sqrt{3}) }  \\  = 14

Answered by BrainlyPopularman
15

GIVEN :

• Value of p = 2-√3

TO FIND :

Value of p²+1/p² = ?

SOLUTION :

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =?\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} = {p}^{2} +  \dfrac{1}{{p}^{2}} + 2 - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} = {p}^{2} +  \dfrac{1}{{p}^{2}} + 2(p) \left( \dfrac{1}{p} \right)- 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =\left[p +  \dfrac{1}{p} \right]^{2} - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =\left[(2 -  \sqrt{3})+  \dfrac{1}{(2 -  \sqrt{3})} \right]^{2} - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =\left[(2 -  \sqrt{3})+  \dfrac{1}{(2 -  \sqrt{3})} \times  \dfrac{(2 +  \sqrt{3}) }{(2 +  \sqrt{3})} \right]^{2} - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =\left[(2 -  \sqrt{3})+\dfrac{2 +  \sqrt{3}}{4 -3} \right]^{2} - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =\left[(2 -  \sqrt{3})+(2 +  \sqrt{3})\right]^{2} - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =(2 + 2)^{2} - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =(4)^{2} - 2\\

 \\ \bf \implies {p}^{2} +  \dfrac{1}{{p}^{2}} =16- 2\\

\\\implies \large{ \boxed{ \bf{p}^{2} +  \dfrac{1}{{p}^{2}} =14}}\\

Similar questions