Math, asked by praneel02k, 1 month ago

If p + q = 1 + pq, prove that p3 + q3 = 1 + p3q3

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:p + q = 1 + pq

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\: {p}^{3}  +  {q}^{3}  = 1 +  {p}^{3}  {q}^{3}

\large\underline{\sf{Solution-}}

We know,

 \green{ \boxed{ \bf{ \:  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)}}}

Given that,

\rm :\longmapsto\:p + q = 1 + pq

On cubing both sides, we get

\rm :\longmapsto\: {(p + q)}^{3}  =  {(1 + qp)}^{3}

\rm :\longmapsto\: {p}^{3} +  {q}^{3} + 3pq(p + q) =  {1}^{3} +  {(pq)}^{3} + 3pq(1 + pq)

\rm :\longmapsto\: {p}^{3} +  {q}^{3} + 3pq(p + q) =  {1}^{3} +  {(pq)}^{3} + 3pq(p + q)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: p + q = 1 + pq\bigg \}}

\rm :\longmapsto\: {p}^{3}  +  {q}^{3}  = 1 +  {p}^{3}  {q}^{3}

{\boxed{\boxed{\bf{Hence, Proved}}}}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions