If p + q = 1 + pq, prove that p3 + q3 = 1 + p3q3
Answers
Answered by
5
We know,
Given that,
On cubing both sides, we get
More Identities to know:
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)² = (a - b)² + 4ab
- (a - b)² = (a + b)² - 4ab
- (a + b)² + (a - b)² = 2(a² + b²)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions
English,
20 days ago
Physics,
1 month ago
Social Sciences,
1 month ago
English,
8 months ago
Physics,
8 months ago