Math, asked by kavithaardd, 2 months ago

if p/q =(2/3)^3 %(3/2)^–3 then the value of (p/q) ^–10​

Answers

Answered by lohitjinaga
1

Step-by-step explanation:

Solution :-

It is given that p/q = (2/3)^3 + (3/2)^-3.

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10=> [(2/3)^3 + (3/2)^-3]^3 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10=> [(2/3)^3 + (3/2)^-3]^3 - 10=> ((2/3)^3)^3 + ((3/2)^-3)^3 + 3(2/3)^3*((3/2)^-3)^2 + 3(2/3)^3)^2*(3/2)^-3 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10=> [(2/3)^3 + (3/2)^-3]^3 - 10=> ((2/3)^3)^3 + ((3/2)^-3)^3 + 3(2/3)^3*((3/2)^-3)^2 + 3(2/3)^3)^2*(3/2)^-3 - 10=> (2/3)^9 + (3/2)^-9 + 3(2/3)^3*(3/2)^-6 + 3*(2/3)^6*(3/2)^-3 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10=> [(2/3)^3 + (3/2)^-3]^3 - 10=> ((2/3)^3)^3 + ((3/2)^-3)^3 + 3(2/3)^3*((3/2)^-3)^2 + 3(2/3)^3)^2*(3/2)^-3 - 10=> (2/3)^9 + (3/2)^-9 + 3(2/3)^3*(3/2)^-6 + 3*(2/3)^6*(3/2)^-3 - 10=> (2/3)^9 + (2/3)^9 + 3(2/3)^3*(2/3)^6 + 3*(2/3)^6*(2/3)^3 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10=> [(2/3)^3 + (3/2)^-3]^3 - 10=> ((2/3)^3)^3 + ((3/2)^-3)^3 + 3(2/3)^3*((3/2)^-3)^2 + 3(2/3)^3)^2*(3/2)^-3 - 10=> (2/3)^9 + (3/2)^-9 + 3(2/3)^3*(3/2)^-6 + 3*(2/3)^6*(3/2)^-3 - 10=> (2/3)^9 + (2/3)^9 + 3(2/3)^3*(2/3)^6 + 3*(2/3)^6*(2/3)^3 - 10=> 2*(2/3)^9 + 3(2/3)^9 + 3*(2/3)^9 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10=> [(2/3)^3 + (3/2)^-3]^3 - 10=> ((2/3)^3)^3 + ((3/2)^-3)^3 + 3(2/3)^3*((3/2)^-3)^2 + 3(2/3)^3)^2*(3/2)^-3 - 10=> (2/3)^9 + (3/2)^-9 + 3(2/3)^3*(3/2)^-6 + 3*(2/3)^6*(3/2)^-3 - 10=> (2/3)^9 + (2/3)^9 + 3(2/3)^3*(2/3)^6 + 3*(2/3)^6*(2/3)^3 - 10=> 2*(2/3)^9 + 3(2/3)^9 + 3*(2/3)^9 - 10=> 10*(2/3)^9 - 10

It is given that p/q = (2/3)^3 + (3/2)^-3.We need to determine (p/q)^3 - 10(p/q)^3 - 10=> [(2/3)^3 + (3/2)^-3]^3 - 10=> ((2/3)^3)^3 + ((3/2)^-3)^3 + 3(2/3)^3*((3/2)^-3)^2 + 3(2/3)^3)^2*(3/2)^-3 - 10=> (2/3)^9 + (3/2)^-9 + 3(2/3)^3*(3/2)^-6 + 3*(2/3)^6*(3/2)^-3 - 10=> (2/3)^9 + (2/3)^9 + 3(2/3)^3*(2/3)^6 + 3*(2/3)^6*(2/3)^3 - 10=> 2*(2/3)^9 + 3(2/3)^9 + 3*(2/3)^9 - 10=> 10*(2/3)^9 - 10The value of (p/q)^3 - 10 = 10*(2/3)^9 - 10

Similar questions