Math, asked by shreetrikannad0712, 2 days ago

If p+q = 25 and pq = 200 then find p^2+q^2

Answers

Answered by sakshiveer1828
0

Answer:

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

Answered by samiramishra
5

Solution-:

 \displaystyle \large{ \sf{ \orange{given}}}

p + q = 25

pq = 200

to find -:

p² + q²

Using -:

( p + q )² = p² + q² + 2pq

Let's begin

 \displaystyle \large{ \sf{(p + q) {}^{2}  = p {}^{2}  + q {}^{2}  + 2pq}}

Putting given value

 \displaystyle \large{ \sf{(25) {}^{2} =  {p}^{2}   + q {}^{2}  + 2 \times (200)}}

Now,,

 \displaystyle \large{ \sf{625 = p {}^{2}  + q {}^{2}  + 400}}

transposing 400 on LHS

 \displaystyle \large{ \sf{625 - 400 = p {}^{2}  +  {q}^{2} }}

now,,

 \displaystyle \large{ \sf{225 = p {}^{2}  +  {q}^{2} }}

hence,,

 \displaystyle \large{ \sf{ \green{value \: of \: p {}^{2}  +  {q}^{2}  = 225 \:  \: ans}}}

Similar questions