Math, asked by pinompan, 1 month ago

If p+q=9 and p^2+q^2=51, find the value of pq.​

Answers

Answered by amansharma264
24

EXPLANATION.

⇒ p + q = 9. - - - - - (1).

⇒ p² + q² = 51. - - - - - (2).

As we know that,

We can write equation as,

⇒ p² + q² = 51.

⇒ (p + q)² - 2pq = 51.

Put the value of (p + q = 9) in the equation, we get.

⇒ (9)² - 2pq = 51.

⇒ 81 - 2pq = 51.

⇒ - 2pq = 51 - 81.

⇒ - 2pq = - 30.

⇒ 2pq = 30.

pq = 15.

Answered by Anonymous
19

Answer:

  • The value of pq is 15.

Step-by-step explanation:

.

Given,

.

  •  \tt p + q = 9

  •  \tt {p}^{2}  +  {q}^{2} =  51

.

.

To Find,

.

  • The value of pq.

.

.

Solution,

.

 \tt Identity \:  \: 1  \\  \tt (a + b)^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

:\implies\tt (p + q) ^{2}  =  {p}^{2}  +  {q}^{2}  + 2pq \\  \\ :\implies\tt  {(p + q)}^{2}  - 2pq =  {p}^{2}  +  {q}^{2}  \\  \\ :\implies\tt  {(9)}^{2}  - 2pq = 51 \\  \\ :\implies\tt 81 - 2pq = 51 \\  \\ :\implies\tt  - 2pq = 51 - 81 \\  \\ :\implies\tt  - 2pq =  - 30 \\  \\ :\implies \color{red} \boxed{\tt pq = 15}

.

.

Required Answer,

.

  • The value of pq is 15.
Similar questions