if p-q=9 and pq=36 evaluate 1)p+q 2) p^2-q^2
Answers
Step-by-step explanation:
n:
p-q=9
pq=36
i)) given p-q=9
(p-q)²=9² (squaring both sides LHS and RHS)
p²+q²-2pq = 81
p²+q²-2×36=81 (substituting value of pq)
p²+q²-72=81 (shifting -72 from LHS to RHS)
p²+q²=153..................................(1)
Now consider the equation
(p+q)²=p²+q²+2pq
(p+q)²=153+(2×36) (substituting p²+q² from (1) and pq(given))
(p+q)²=153+72=225
(p+q)²=225
Taking square root on both sides:
√(p+q)²=√225 ((root of a square no),is the no itself)
p+q=15
ii)) now considering p²-q²
p²-q²=(p-q)×(p+q) (algebraic formula)
p²-q²=(9)×(15) (p-q=given : p+q=found from 1st answer)
p²-q²=135
Answer:
p+q = 15 ; p^2-q^2 = 24
Step-by-step explanation:
p-q = 9 and pq = 36
p-q = 9
squaring both side
(p-q)^2 = 9^2
p^2 + q^2 -2pq = 81
p^2 + q^2 = 81 + 2 * 36 [pq = 36]
p^2 + q^2 = 153
therefore, value of (p+q)^2
(p+q)^2 = p^2 + q^2 +2pq
(p+q)^2 = 153 + 72 [p^2 + q^2 = 153]
(p+q) = √225 =15
value of p^2-q^2= (p-q)(p+q)
= 9+15 = 24