If P, Q are the points of trisection of A(1,-2)B(-5,6) then PQ=
Answers
Answered by
4
The required value of PQ is
Step-by-step explanation:
Given : A(1,-2) and B(-5,6)
A----------P---------Q-----------B
According to the given condition
AP=PQ=QB
So, P divide AB in the ratio 1:2
Let the co ordinates of P be (x,y)
x=[1 x(-7)+2 x 2]/(2+1)=-3/3=-1
y=[1 x 4+2 x (-2)]/(2+1)=0
So the coordinates of P are (-1,0)
Again Q divides AB in the ration 2:1
Let the co ordinates of Q be (a,b)
a=[2 x(-7)+1 x 2]/(2+1)=-12/3=-4
b=[2 x 4+1 x (-2)]/(2+1)=2
So the coordinates of Q are (-4,2)
Hence PQ= sqrt[{-1-(-4)}^2 + (0-2)^2}
=sqrt(9+4) =sqrt(13)
Similar questions