Math, asked by olisaolina, 9 months ago

If p, q are zeroes of polynomial 2x2 -7x +3 find the value of p2 + q2

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{p^{2}+q^{2}=\frac{37}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies  {2x}^{2}  - 7x + 3 = 0 \\  \\ \tt: \implies p \: and \: q \: are \: zeroes \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies  {p}^{2}  +  {q}^{2}  =?

• According to given question :

 \tt \circ \:  {2x}^{2} - 7x + 3 = 0 \\  \\  \tt \circ \: a = 2 \:  \:  \:  \:  \:  \: b =  - 7 \:  \:  \:  \:  \:  \: c = 3  \\  \\  \bold{For \: sum \: of \: zeroes :}  \\  \tt:  \implies  p + q =  \frac{ - b}{a}  \\  \\ \tt:  \implies p + q =  \frac{ - ( - 7)}{2}  \\  \\  \green{\tt:  \implies p + q =  \frac{7}{2} } \\  \\  \bold{For \: product \: of \: zeroes :  } \\ \tt:  \implies p \times q =  \frac{c}{a}  \\  \\  \green{\tt:  \implies pq =  \frac{3}{2}}  \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies  {p}^{2}  +  {q}^{2} =  {(p + q)}^{2}   - 2pq \\  \\ \tt:  \implies  { p}^{2}  +  {q}^{2}  =  (\frac{7}{2} )^{2}  - 2 \times  \frac{3}{2}  \\  \\ \tt:  \implies  { p}^{2}  +  {q}^{2}  =  \frac{49}{4}  - 3 \\  \\ \tt:  \implies  { p}^{2}  +  {q}^{2}  =  \frac{49 - 12}{4}  \\  \\  \green{\tt:  \implies  { p}^{2}  +  {q}^{2}  = \frac{37}{4} }

Answered by ғɪɴɴвαłσℜ
0

Aɴꜱᴡᴇʀ

☞ p² + q² = 9.25

_________________

Gɪᴠᴇɴ

➳ P and Q are the zeros of the polynomial 2x²- 7x + 3

_________________

Tᴏ ꜰɪɴᴅ

➤ p² + q² ?

_________________

Sᴛᴇᴘꜱ

❍ First let's find the value of p and q

 \leadsto \sf 2 {x}^{2}  - 7x + 3 = 0 \\  \\  \leadsto \sf2 {x}^{2} - 6x - 1x + 3 = 0 \\  \\  \leadsto \sf 2x(x - 3) - 1(x  -  3) = 0 \\  \\  \leadsto{} \sf(2x - 1)(x - 3) = 0

Equating each seperately with 0,

 \longrightarrow \sf(2x - 1) = 0 \\  \\  \longrightarrow{} \sf  \red{x = \frac{1}{2}}

 \longrightarrow \sf(x -3 ) = 0 \\  \\  \longrightarrow \red{ \sf x = 3}

Therefore,

  \boxed{ \bigstar{} \sf{} \:  \: p =  \frac{1}{2} } \\  \\   \boxed{\bigstar{} \:  \:  \sf{}q = 3}

So substituting in p² +q²

 \dashrightarrow{} \sf {p}^{2} +  {q}^{2} =  ( \frac{1}{2 }{)}^{2} +  {(3)}^{2}  \\  \\  \dashrightarrow{} \sf  \frac{1}{4} + 9 \\  \\  \dashrightarrow \sf \frac{1 + 36}{4} \\   \\    \sf\pink{\dashrightarrow   \frac{37}{4} \: \: or\:\: 9.25  }

______________________

Similar questions