Science, asked by NobiShizuka360, 2 months ago

If p+q+r=12 and p^2 +q^2+r^2=50, find pq+ qr +pr.

________

Answers

Answered by Anonymous
50

Explanation:

 \sf \blue{Given:}

  • p + q + r = 12
  • p² + q² + r² = 50

 \sf \red{To \:  Find:-}

  • pq + qr + pr

 \sf\pink{Understanding:-}

  • In this question,
  • we have given two different values which are p+q+r = 12 and p²+q²+r² = 50 and asked to find out value of pq+qr+pr. To solve these types of questions, we need some algebraic expressions which help us solve these easily.

 \sf \orange{Solution:}

  • As we have mentioned above that we need algebraic expressions to solve,

 \sf \purple{We  \: know \:  that:-}

\large{\boxed{\red{\small{\bf{(a+b+c)^2~=~a^2+b^2+c^2+2(ab+bc+ca)}}}}} </p><p>

 \sf \blue{Where:-}

  • p = a
  • q = b
  • r = c

 \bf \pink{Let's \:  put  \: value \:  in  \: formula  \: :-}

(p+q+r)² = p² + q² + r² +2(pq + qr + rs)

→ 12² = 50 + 2(pq + qr + pr)

→ 144 = 50 + 2(pq + qr + pr)

→ 144 - 50 = 2(pq + qr + pr)

→ 94 = 2(pq + qr + pr)

→ pq + qr + pr = 94/2

→ pq + qr + pr = 47

  \sf\green {Therefore,}

\large{\boxed{\purple{\small{\bf{value~of~pq+qr+ pr~=~47}}}}}

 \sf \gray{value of pq+qr+pr = 47}

 \sf \underline{More \:  algebraic \:  identities \:  related \:  to \:  this:-}

(a+b)² = a² + b² + 2ab

(a-b)² = a² + b² - 2ab

(a+b)(a-b) = a² - b²

(a + b + c)² = a^2+b^2+c^2+2(ab+bc+ca)

(a+b)³ = a³ + b³ + 3ab(a+b)

(a-b)³ = a³ - b³ - 3ab(a-b)

____________________________________

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
54

Explanation:

Explanation:

\sf \blue{Given:}

  • p + q + r = 12
  • p² + q² + r² = 50

\sf \red{To \: Find:-}

  • pq + qr + pr

\sf\pink{Understanding:-}

  • In this question,
  • we have given two different values which are p+q+r = 12 and p²+q²+r² = 50 and asked to find out value of pq+qr+pr. To solve these types of questions, we need some algebraic expressions which help us solve these easily.

\sf \orange{Solution:}

  • As we have mentioned above that we need algebraic expressions to solve,

\sf \purple{We \: know \: that:-}

\large{\boxed{\red{\small{\bf{(a+b+c)^2~=~a^2+b^2+c^2+2(ab+bc+ca)}}}}}

\sf \blue{Where:-}

  • p = a
  • q = b
  • r = c

\bf \pink{Let's \: put \: value \: in \: formula \: :-}Let

 \pink{ sputvalueinformula:−}

(p+q+r)² = p² + q² + r² +2(pq + qr + rs)

→ 12² = 50 + 2(pq + qr + pr)

→ 144 = 50 + 2(pq + qr + pr)

→ 144 - 50 = 2(pq + qr + pr)

→ 94 = 2(pq + qr + pr)

→ pq + qr + pr = 94/2

→ pq + qr + pr = 47

\sf\green {Therefore,}

\large{\boxed{\purple{\small{\bf{value~of~pq+qr+ pr~=~47}}}}}

\sf \gray{value of pq+qr+pr = 47}

\sf \underline{More \: algebraic \: identities \: related \: to \: this:-}

(a+b)² = a² + b² + 2ab

(a-b)² = a² + b² - 2ab

(a+b)(a-b) = a² - b²

(a + b + c)² = a^2+b^2+c^2+2(ab+bc+ca)

(a+b)³ = a³ + b³ + 3ab(a+b)

(a-b)³ = a³ - b³ - 3ab(a-b)

__________________________

Similar questions