Math, asked by narendrasiigh1388, 5 months ago

if p+q+r=16 and pq+qr+rp=25 find the value of p2+q2+r2

Answers

Answered by yashaswini3679
12

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

(p + q + r)² = p² + q² + r² + 2(pq + qr + rp)

16² = p² + q² + r² + 2(25)

256 = p² + q² + r² + 50

p² + q² + r² = 206

hope it helps..

Answered by SuitableBoy
51

{\underline{\underline{\frak{\pink{\dag\:Given :-}}}}}

 \\

  • p + q + r = 16
  • pq + qr + rp = 25

 \\

{\underline{\underline{\frak{\pink{\dag\:To\:Find:-}}}}}

  \\

  • p² + q² + r²

 \\

{\underline{\underline{\frak{\pink{\dag\:Solution:-}}}}}

 \\

We know that

 \star\boxed{ \sf{ {(a + b + c)}^{2}  =  {a}^{2} +  {b}^{2} +  {c}^{2}  + 2(ab + bc + ac)  }}

So, here,

 \colon \rightarrow \sf \:  {(p + q + r)}^{2}  =  {p}^{2}  +  {q}^{2}  +  {r}^{2}  + 2(pq + qr + rq) \\  \\  \sf \: put \: the \: given \: values \:  \\  \\  \colon \rightarrow \sf \:  {(16)}^{2}  =  {p}^{2}  +  {q}^{2}  +  {r}^{2}  + 2(25) \\  \\  \colon \rightarrow \sf \: 256 =  {p}^{2}  +  {q}^{2}  +  {r}^{2}  + 50 \\  \\  \colon  \rightarrow \sf \:  {p}^{2}  +  {q}^{2}  +  {r}^{2}  = 256 - 50 \\  \\  \colon \rightarrow \underline{ \boxed{ \frak{ \red{ {p}^{2}  +  {q}^{2}  +  {r}^{2}  = \bf 206}}}}

so,

The value of p² + q² + r² = 206 .

 \\

_____________________________

 \\

{\underline{\underline{\bf{Some\:Formulas:}}}}

 \\

• (a+b)² = a² + b² + 2ab

• (a-b)² = a² + b² - 2ab

• (a+b+c)² = a² + b² + c² + 2(ab+bc+ac)

• (a+b)³ = a³ + b³ + 3ab(a+b)

• (a-b)³ = a³ - b³ - 3ab(a-b)

 \\  \\

Similar questions