Math, asked by Gargibest26, 3 months ago

If p + q +r = 2, p²+ q² + r² = 30 and pqr = 10, then the value of (1 - p) (1 - q)(1 - r) will be ???

be

[NSEJS 2017-18]

Options:

A. -18

B.-24

C. -27

D. -35

Answers

Answered by shadowsabers03
42

Recall the expansion of a cubic polynomial having roots p, q and r.

\longrightarrow(x-p)(x-q)(x-r)=x^3-(p+q+r)x^2+(pq+qr+rp)x-pqr

Taking x=1,

\longrightarrow(1-p)(1-q)(1-r)=1-(p+q+r)+(pq+qr+rp)-pqr

We're given,

  • p+q+r=2\quad\quad\dots(1)
  • p^2+q^2+r^2=30\quad\quad\dots(2)
  • pqr=10\quad\quad\dots(3)

Squaring (1),

\longrightarrow (p+q+r)^2=2^2

\longrightarrow p^2+q^2+r^2+2(pq+qr+rp)=4

From (2),

\longrightarrow 30+2(pq+qr+rp)=4

\longrightarrow pq+qr+rp=-13

Now,

\longrightarrow(1-p)(1-q)(1-r)=1-(p+q+r)+(pq+qr+rp)-pqr

\longrightarrow(1-p)(1-q)(1-r)=1-2-13-10

\longrightarrow\underline{\underline{(1-p)(1-q)(1-r)=-24}}

Hence (B) is the answer.

Answered by diajain01
89

 \: {\boxed{\underline{\tt{ \orange{Required  \:  \: answer \:  \:  is \:  \:  as \:  \:  follows:-}}}}}

Option (B) --- ( -24 )

★GIVEN:-

  •  \sf{p+q+r = 2}

  •  \sf{ {p}^{2}  +  {q}^{2}   +  {r}^{2} = 30 }

  •  \sf{pqr = 10}

TO FIND:-

  •  \sf{(1 - p) (1 - q)(1 - r)}

★SOLUTION:-

 :  \longrightarrow \displaystyle \sf{(1 - p) (1 - q)(1 - r)}

 :  \longrightarrow \displaystyle \sf{(1 - r)(1 - q - p + pq)}

 :\longrightarrow\displaystyle\sf{1 - q - p + pq - r + rq + rp - rpq} \\  \\  :\longrightarrow\displaystyle\sf{1 - p - q - r + pq + rq + rp  - rpq} \\  \\  :\longrightarrow\displaystyle\sf{1 - (p + q + r) + pq + rq + rp - rpq━━(1)} \\  \\  :\longrightarrow\displaystyle\sf{ {(p + q + r)}^{2}  =  {p}^{2} +  {q}^{2}  +  {r}^{2} + 2(pq + rq + rp)  } \\  \\  :\longrightarrow\displaystyle\sf{4 = 30 + 2(pq + rq + rp)} \\  \\  :\longrightarrow\displaystyle\sf{ - 26 = 2(pq + rq + rp)} \\  \\:\longrightarrow\displaystyle\sf{ (pq + rq + rp) =  - 13━━(2)} \\  \\  \displaystyle\sf{ put \: value \: of \: (2) \: in \: (1)}  \\  \\  : \longrightarrow  \displaystyle \sf{1 - 2 - 13 - 10} \\  \\ { \boxed{ \underline{ \pink{ \huge{ - 24}}}}}

Similar questions