If (p+q+r=5) and pq+qr+rp = 10, then the value of p³+q³+r³-3pqr will be ?
Answers
Answer:
-25
Step-by-step explanation:
Use:
(p + q + r)³ = p³ + q³ + r³ - 3pqr + 3(p + q + r)(pq + qr + rp)
Rearranged, this gives:
p³ + q³ + r³ - 3pqr = (p + q + r)³ - 3(p + q + r)(pq + qr + rp).
Substituting the given values for p+q+r and pq+qr+rp gives:
p³ + q³ + r³ - 3pqr = 5³ - 3×5×10 = 125 - 150 = -25
Formula Used :
Explanation :
Here ,
p + q + r = 5 ... (1)
pq + qr + rp = 10 ... (2)
Now (1) on both sides , we get ,
⇒ ( p + q + r )² = 5²
⇒ p² + q² + r² + 2pq + 2qr + 2rp = 25
⇒ p² + q² + r² + 2 ( pq + qr + rp ) = 25
⇒ p² + q² + r² + 2 (10) = 25 [ From (2) ]
⇒ p² + q² + r² = 25 - 20
⇒ p² + q² + r² = 5 ... (3)
Now our required ,
⇒ p³ + q³ + r³ - 3pqr
⇒ ( p + q + r ) ( p² + q² + r² - ( pq + qr + rp ))
⇒ ( 5 ) ( 5 - 10 ) [ From (1) , (2) , (3) ]
⇒ 5 ( -5 )
⇒ - 25
So the value of p³+q³+r³-3pqr is - 25 .