Math, asked by wksinghasha8700, 11 months ago

if p+q+r=9 then find (3-p)3 +(3-q)3 +(3-r)3

Answers

Answered by MaheswariS
25

\textbf{Formula used:}

\text{If $\bf\,a+b+c=0$, then $\bf\,a^3+b^3+c^3=3abc$}

\textbf{Given:}

p+q+r=9

\textbf{To find:}

(3-p)^3+(3-q)^3+(3-r)^3

\textbf{Solution:}

\text{Consider,}

p+q+r=9

\implies\,9-(p+q+r)=0

\implies\,(3-p)+(3-q)+(3-r)=0

\text{Using the above formula, we get}

(3-p)^3+(3-q)^3+(3-r)^3=3\,(3-p)(3-q)(3-r)

(3-p)^3+(3-q)^3+(3-r)^3=3[3^3-(p+q+r)3^2+(pq+qr+rp)3+pqr]

(3-p)^3+(3-q)^3+(3-r)^3=3[27-(9)3^2+3(pq+qr+rp)+pqr]

(3-p)^3+(3-q)^3+(3-r)^3=3[27-81+3(pq+qr+rp)+pqr]

\implies\bf(3-p)^3+(3-q)^3+(3-r)^3=3[pqr+3(pq+qr+rp)-54]

Find more:

If cos theta +sec theta = root 3, prove that cos cube theta +sec cube theta = 0

https://brainly.in/question/3077758

Answered by semaggarwal
13

Answer:

3(3-p)(3-q)(3-r)

Step-by-step explanation:

this is correct answer go for this one

Similar questions