if P,Q,R are in A.P then p^2(q+r),q^2(r+p),r^2(p+q) are in
Answers
Given : P,Q,R are in A.P
To find : P²(Q + R) , Q²(R + P) , R²(P + Q) are in
Solution:
P,Q,R are in A.P
=> 2Q = P + R
P²(Q + R)
Q²(R + P)
R²(P + Q)
P²(Q + R) + R²(P + Q)
= P²Q + P²R + R²P + R²Q
= P²Q + R²Q + PR(P + R)
= P²Q + R²Q + PR(2Q)
= Q(P² + R² + 2PR)
= Q(P + R)²
= Q(P + R)(P + R)
=Q(P + R)2Q
= 2Q²(P + R)
= 2Q²(R + P)
P²(Q + R) + R²(P + Q) = 2Q²(R + P)
=> P²(Q + R) , Q²(R + P) , R²(P + Q) are in AP
Learn more:
If a1, a2, a3,...... are in AP then ap, aq, ar, are in AP if p, q, r are in(a)
https://brainly.in/question/13642218
if the side lengths a,b,c are in A.P. then prove that cos(A-C)/2 = 2sin ...
https://brainly.in/question/13031094
If the zeros of the polynomial x3 - ax2 + bx - c are A.P, then show that ...
https://brainly.in/question/2833140
I hope you can understand please follow me