Math, asked by sukdebkarmakar0, 10 months ago

if p,q,r are in AP, show that p th ,q th , r th terms of any GP are themselves in GP

Answers

Answered by rishu6845
9

\underline{\bold{Given}}\longrightarrow \\ p \: and \: q \: and \: r \: are \: in \: ap

\underline{\bold{To \: prove}}\longrightarrow \\ pth \: qth \: rth \: terms \: of \: any \: gp \: are \: themselves \: in \: gp

\underline{\bold{Concept \: used}}\longrightarrow \\ 1) \: if \: a \:and \:  b \: and \: c \: are \: in \: ap \\ a + c = 2b \\ 2)nth \: term \: of \: gp = a \:  {r}^{n - 1}  \\ 3)if \: three \: terms \: are \: in \: gp \\  {b}^{2}  = ac

\underline{\bold{Solution}}\longrightarrow \\ p \: and \: q \: and \: r \: are \: in \: ap \: so \\  =  > p + r = 2q  \\ let \: common \: ratio \: be \: x\\ now  \\ pth \: term \: of \: gp \:  = a {x}^{p - 1}  \\ qth \: term \: of \: gp = a {x}^{q - 1}  \\ rth \: term \: of \: gp = a {x}^{r - 1}  \\ (pth \: term) \: (rth \: term) =( a {x}^{p - 1} ) \: (a {x}^{r - 1})  \\  =  {a}^{2} \:  {x}^{p - 1 + r - 1}   \\  =  {a}^{2}  \:  {x}^{p + r - 2}  \\  =  {a}^{2}  {x}^{2q - 2}  \\ =   {a}^{2}  {x}^{2(q - 1)}  \\  =  {a}^{2}  \:  {( {x}^{q - 1}) }^{2}  \\  =  {(a {x}^{q - 1}) }^{2}  \\  = (qth \: term \: of \: gp)^{2}  \\ so \: pth \:and  \: qth \: and \: rth \: term \:are \: in \: gp

Similar questions