Math, asked by terminatorTG, 5 hours ago

If p, q, r are the ath, bth, cth terms of an A.P then p(b - c) + q(c - a) + r(a - b) =

Answers

Answered by anushka0290
0

Answer:

Let A be the first term and D the common difference of A.P.

Tp=a=A+(p−1)D=(A−D)+pD (1)

Tq =b=A+(q−1)D=(A−D)+qD ..(2)

Tr =c=A+(r−1)D=(A−D)+rD ..(3)

Here we have got two unknowns A and D which are to be eliminated.

We multiply (1),(2) and (3) by q−r,r−p and p−q respectively and add:

a(q−r)+b(r−p)+c(p−q)

=(A−D)[q−r+r−p+p−q]+D[p(q−r)+q(r−p)+r(p−q)]

=0.

Answered by akshay0222
0

Given,

Here p,q and r are the\[{a^{th}}\], \[{b^{th}}\] and \[{c^{th}}\]term of an A.P.

Solution,

Consider an A.P. whose first term is A and the common difference is d.

Therefore,

\[ \Rightarrow p = A + \left( {a - 1} \right)d\]

\[ \Rightarrow q = A + \left( {b - 1} \right)d\]

\[ \Rightarrow r = A + \left( {c - 1} \right)d\]

Apply the above value to the equation \[p\left( {b - c} \right) + q\left( {c - a} \right) + r\left( {a - b} \right).\]

Therefore,

\[ \Rightarrow \left[ {\left( {A + \left( {a - 1} \right)d} \right)\left( {b - c} \right)} \right] + \left[ {\left( {A + \left( {b - 1} \right)d} \right)\left( {c - a} \right)} \right] + \left[ {\left( {A + \left( {c - 1} \right)d} \right)\left( {a - b} \right)} \right]\]

\[ \Rightarrow \left[ {\left( {A + ad - d} \right)\left( {b - c} \right)} \right] + \left[ {\left( {A + bd - d} \right)\left( {c - a} \right)} \right] + \left[ {\left( {A + cd - d} \right)\left( {a - b} \right)} \right]\]

\[ \Rightarrow \left[ {Ab - Ac + abd - acd + dc} \right] + \left[ {Ac - Aa + bcd - abd + ad} \right] + \left[ {Aa - Ab + acd - bcd - ad + bd} \right]\]\[ \Rightarrow 0\]

Hence, the value  \[p\left( {b - c} \right) + q\left( {c - a} \right) + r\left( {a - b} \right)\] is\[0.\]

Similar questions