Math, asked by susantadutta797, 5 months ago

if P, Q, R, are the midpoints of side AB, BC, CA respectively of triangle ABC and area of triangle PQR = k (area triangle ABC) then the value of k is?​

Answers

Answered by anshika9239
1
Sydd Sdc yehudvhdbdsfuevvfuydh
Answered by mathdude500
3

Basic concept used :-

 \large \boxed {\tt \:  ⟼Midpoint  \: theorem :- }

  • The midpoint theorem states that “The line segment in a triangle joining the midpoint of two sides of the triangle is said to be parallel to its third side and is also half of the length of the third side.”

 \large \boxed {\tt \:  ⟼ \: Area  \: Ratio \:  Theorem:- :- }

  •  If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

\tt \:  ⟼Since, \:  P  \: is  \: midpoint \:  of  \: AB</p><p>

\tt \:  ⟼and  \: Q \:  is  \: midpoint  \: of \:  BC.</p><p>

\tt \:  ⟼So,  \: by  \: midpoint \:  theorem,

\tt \:  ⟼ \: PQ  \: =  \: \dfrac{1}{2} AC

\bf\implies \:\dfrac{PQ}{AC}  = \dfrac{1}{2}  -  -  - (1)

\tt \:  ⟼Now, \:  R  \: is \:  midpoint  \: of  \: AC

\tt \:  ⟼and \:  Q \:  is  \: midpoint \:  of  \: BC.</p><p>

\tt \:  ⟼So,  \: by  \: midpoint \:  theorem,

\tt \:  ⟼ \: QR \:  =  \: \dfrac{1}{2} AB

\bf\implies \:\dfrac{QR}{AB}  = \dfrac{1}{2}  -  -  - (2)

\tt \:  ⟼Now,  \: R \:  is  \: midpoint  \: of  \: AC

\tt \:  ⟼ \: and \:  \:  P  \: is  \: midpoint \:  of  \: AB

\tt \:  ⟼So, \:  by \:  midpoint \:  theorem,

\tt \:  ⟼PR \:  =  \: \dfrac{1}{2} BC

\bf\implies \:\dfrac{PR}{BC}  \:  = \dfrac{1}{2}  -  -  - (3)

☆ From (1), (2) and (3), we conclude that

\tt \:  ⟼\dfrac{PQ}{AC}  = \dfrac{QR}{AB}  = \dfrac{PR}{BC}  = \dfrac{1}{2}

\tt \:  ⟼This \:  implies  \:  \triangle  \: QRP \:  \sim \:  \triangle ABC \:

\tt \:  ⟼ \:  \therefore \: By  \: Area \:  Ratio \:  Theorem

\tt \:  ⟼\dfrac{ar(\triangle  \: QRP)}{ ar(\triangle ABC)}  = \dfrac{ {QR}^{2} }{ {AB}^{2} }

\tt \:  ⟼\dfrac{ar(\triangle  \: QRP)}{ ar(\triangle ABC)}  = \:  \bigg( { \dfrac{1}{2}  \bigg)}^{2}

\tt \:  ⟼\dfrac{ar(\triangle  \: QRP)}{ ar(\triangle ABC)}  = \: \dfrac{1}{4}

\tt \:  ⟼ \: ar(\triangle  \: QRP) \:  =  \: \dfrac{1}{4} ar( \triangle ABC)

 \large \boxed{\tt \:  ⟼ \: Hence,  \: k \:  =  \: \dfrac{1}{4} }

Similar questions