Math, asked by nikhileshmendhe07, 9 months ago

if p,q,r,s are in GP then show that (q-r)^2+ ( r-p)^2 + (s-q)^2 = (p-s)^2​

Answers

Answered by rajeevr06
2

Answer:

Let common ratio = k

so q = pk, r = pk², s = pk³

LHS

 {(q - r)}^{2}  +  {(r - p)}^{2}  +  {(s - q)}^{2}  =

 {(pk - p {k}^{2} )}^{2}  +  {(p {k}^{2} - p) }^{2}  +  {(pk {}^{3}  - pk)}^{2}  =

 {p}^{2}  {k}^{2}  {(1 - k)}^{2}  +  {p}^{2} (k {}^{2}  - 1) {}^{2}  +  {p}^{2}  {k}^{2} ( {k}^{2}  - 1) {}^{2}  = (k - 1) {}^{2} ( {p}^{2}  {k}^{2}  +  {p}^{2}  {(k + 1)}^{2}  +  {p}^{2}  {k}^{2}  {(k + 1)}^{2} )

Similar questions