Math, asked by Ajstr2221, 1 year ago

If p q r term of an hp be a,b,c prove that (q-r)bc+(r-p)ac+(p-q)ab=0

Answers

Answered by sivaprasath
1

Answer:

Step-by-step explanation:

Given :

p , q & r th terms of an H.P are a , b & c.

Then, prove that :

(q-r)bc+(r-p)ac+(p-q)ab=0

Solution :

We know that,

a_n = \frac{1}{a + (n-1)d}

a_p = \frac{1}{A + (p-1)d} = a

 A + (p-1)d = \frac{1}{a} ...(i)

a_q = \frac{1}{A + (q-1)d} = b

A + (q-1)d = \frac{1}{b} ...(ii)

a_r = \frac{1}{A + (r-1)d} = c

A + (p-1)d = \frac{1}{c} ...(iii)

So,

\frac{1}{b} - \frac{1}{c} = A + (q - 1)d - [A + (r-1)d]

\frac{c-b}{bc} = A + qd - d - A - rd + d

\frac{c-b}{bc} = (q - r)d

\frac{c-b}{d} = (q -r)bc

\frac{-(b-c)}{d} = (q -r)bc ...(iv)

\frac{1}{a} - \frac{1}{c} = A + (p-1)d - [A + (r - 1)d]

\frac{c-a}{bc} = A + pd - d - A - rd + d

\frac{c - a}{ac} = (p-r)d

\frac{a-c}{d} = (r-p)ac ...(v)

\frac{1}{a} - \frac{1}{b} = A+(p-1)d - [A+(q-1)d]

\frac{b-a}{ab} = A+ pd - d - qd + d

\frac{b-a}{ab} = (p-q)d

\frac{b-a}{d} = (p-q)ab ...(vi)

By adding (iv) , (v), (vi),

We get,

⇒  \frac{-(b-c)}{d} + \frac{a-c}{d} + \frac{b-a}{d} = (q -r)bc + (r-p)ac + (p-q)ab

(q -r)bc + (r-p)ac + (p-q)ab = \frac{ -b + c + a - c+ b - a}{d}

(q -r)bc + (r-p)ac + (p-q)ab = 0

Hence, proved.

Similar questions