if p(q-r)x 2 + q(r-p)x + r(p-q) = 0 has equal roots prove that 2/q = 1/p + 1/r (cyclic order) i.e. p,q,r are in h.p
Answers
Answered by
10
p (q-r) x² + q (r-p) x + r (p-q) = 0
Roots equal => discriminant = 0.
q²(r-p)² = 4 (pq - pr)(pr - qr)
q² r² + q²p² - 2 q² rp = 4 p²qr - 4 pq²r - 4 p²r² + 4 pq r²
Divide the whole by p²q²r²
1/p² + 1/r² + 2/pr = 4/qr - 4/q² + 4/pq
(1/p + 1/r)² - (1/r +1/p) *4/q + 4/q² = 0
(1/p + 1/r -2/q)² = 0
1/p + 1/r = 2/q
Roots equal => discriminant = 0.
q²(r-p)² = 4 (pq - pr)(pr - qr)
q² r² + q²p² - 2 q² rp = 4 p²qr - 4 pq²r - 4 p²r² + 4 pq r²
Divide the whole by p²q²r²
1/p² + 1/r² + 2/pr = 4/qr - 4/q² + 4/pq
(1/p + 1/r)² - (1/r +1/p) *4/q + 4/q² = 0
(1/p + 1/r -2/q)² = 0
1/p + 1/r = 2/q
kvnmurty:
click on red heart thanks button above pls
Similar questions