Math, asked by matinshaikh471978, 8 months ago

if P = Qsquare then what is the square root of P .

plz as soon as ans me​

Answers

Answered by polinamanoj
0

Answer:

Q

Step-by-step explanation:

Q

Plz mark brainliest and follow me

Answered by boudhedarshinis
0

Answer:

Hi...☺

Here is your answer...✌

GIVEN THAT

\begin{gathered}p = \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3 } + \sqrt{2} } \: \: and\: \: q = \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \\\end{gathered}

p=

3

+

2

3

2

andq=

3

2

3

+

2

We know that,

(p + q)² = p² + q² + 2pq

=> (p + q)² - 2pq = p² + q²

=> p² + q² = (p + q)² - 2pq .....(1)

First we calculate

\begin{gathered}{(p + q)}^{2} = {( \frac{ \sqrt{3 } - \sqrt{2} }{ \sqrt{3} + \sqrt{2} } + \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } )}^{2} \\ \\ = {(\frac{{ (\sqrt{3} - \sqrt{2})}^{2} + {( \sqrt{3} + \sqrt{2} )}^{2} }{( \sqrt{3} + \sqrt{2} )( \sqrt{3} - \sqrt{2} ) } )}^{2}\\ \\ =({ \frac{3 + 2 - 2 \sqrt{6} + 3 + 2 + 2 \sqrt{6} }{ {(\sqrt{3} )}^{2} - {( \sqrt{2}) }^{2} })}^{2} \\ \\ = {(\frac{10}{3 - 2}) }^{2}= {(\frac{10}{1} )}^{2}= {10}^{2}=100\end{gathered}

(p+q)

2

=(

3

+

2

3

2

+

3

2

3

+

2

)

2

=(

(

3

+

2

)(

3

2

)

(

3

2

)

2

+(

3

+

2

)

2

) 2=)( 3 ) 2 −( 2 ) 2

3+2−2

6 +3+2+2 6 )

2 =( 3−210 )

2 =( 110 ) 2 =10

2 =100

\begin{gathered}p \times q = \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \\ \\ pq = 1\end{gathered}

p×q=

3+ 2

3 − 2 × 3 − 2

3 + 2

pq=1

Putting value of (p+q)² and pq in (1)

We get,

p² + q² = 100-2×1 = 100-2 = 98

=> p² + q² = 98

Step-by-step explanation:

move to drainlist

Similar questions