Math, asked by Zunad187, 1 year ago

If , p = [ R1 (10 - 2 ) R2 (-5 1) ]

Then find the value of P^(-1 )

Answers

Answered by Swarnimkumar22
20
\bold{\huge{\underline{Question}}}


if, P = \left[\begin{array}{ccc}10& - 2\\ - 5&1\end{array}\right] then find the value of {p}^{1}



\bold{\huge{\underline{Solution-}}}



\bold{\huge{\underline {\underline{\star\:METHOD-1}}}}



 \bf In \:  this \:  type \:  of \:  question \: , remove  \: \\   \bf \: the  \: value \:  of  \: the  \: baryakic \:   \\  \bf \: if  \: the \:  value \:  of \:  the  \: tabular  \: is \:  \\   \bf \: zero \:  then  \: P {}^{ - 1} will  \: not  \\  \bf \: come \:  out.




 \bf{|P|  =  \left[\begin{array}{ccc} 10& - 2\\ - 5&1\end{array}\right]} \\  \\  \\  \bf \implies \: 10 \times 1 - ( - 5)( - 2) \\  \\  \\ \bf  \implies0 \\  \\  \\  \boxed{ \bf \underline{Here \:|P| \: will \: come \: 0 \: so \: we \: does \: not \: find \: the \: value \: of \:  {p}^{ - 1} } }






\bold{\huge{\underline {\underline{\star\:METHOD-2}}}}






P \:  = \left[\begin{array}{ccc}10& - 2\\ - 5&1\end{array}\right]




 \bf \: By \:  applying \:  the  \: initial \:  column \:  conversion \:





 \bf \huge  \underline{\star \: Note - }  \\ \\    \bf \: When \:  determining  \: the  \: first \:  row  \:  \\  \bf \: or  \: column  \: by  \:  {A}^{ - 1} ,  \: if \:  no  \: \\  \bf line \:  of \:  viewer \:  or  \: any \:  element  \: of \:  a \:   \\  \bf \: column  \: come s \:  to \:  zero \:  then \:   \\  \bf {A}^{ - 1}   \: does \:  not \:  come \:  out





 \bf \: We  \: Know \:  that \:  Formula \: \:  \:  \:  \:  \:  \:  \:  \boxed{\boxed {\bf A = I \times \: A }}





\left[\begin{array}{ccc}10& - 2\\ - 5&1\end{array}\right] = \left[\begin{array}{ccc}1& 0\\  0&1\end{array}\right] p\\  \\  \\  \\  \implies \: \bf  \{c _{1}    \: -> c _{1} + 5 \times c _{2} \} \\  \\  \\  \implies \: \left[\begin{array}{ccc}0&  - 2\\  0&1\end{array}\right] = \left[\begin{array}{ccc}1& 0\\  5&1\end{array}\right]





If the components of the first place are zero in the matrix of the left side then A^(-1) is does not exist


Similar questions