Math, asked by iamsaurabhc2328, 11 months ago

If+p=sec+tan+than+find+the+value+of+p^2-1/p^2+1

Answers

Answered by Anonymous
8

Answer:

To find :

  \implies \:  \bf{\frac{ {p}^{2} - 1 }{ {p}^{2} + 1 } } \\

Formula used :

 \star \:  \boxed{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy} \\  \\  \star \: \boxed{  { \sec}^{2}  \theta -  { \tan }^{2}  \theta = 1}

Step-by-step explanation:

According to the question,

 \bf{p \:  =  \sec( \theta)  +  \tan( \theta) }\\  \\

Then ,

  \rightarrow \:    \bf{\frac{ {p}^{2}  - 1}{ {p}^{2} + 1 } } \\  \\  \bf{put \: the \: given \: value \: of \: p} \\  \\  \rightarrow \:   \frac{  { \bigg(( \sec( \theta) +  \tan( \theta) \bigg)  }^{2} - 1 }{ {   \bigg(\sec( \theta) +  \tan( \theta) \bigg)   }^{2}  + 1}  \\  \\   \red{\bf{using \: the \: given \: formula \: }} \\  \\  \rightarrow \:  \small \:  \frac{ { \sec}^{2} \theta +  { \tan}^{2} \theta + 2 \sec( \theta)  \tan( \theta)  - 1  }{ \:  \:  \:  { \sec}^{2} \theta +  { \tan}^{2} \theta + 2 \sec( \theta)  \tan( \theta)   + 1 \: }  \\  \\   \because { \sec }^{2}  \theta - 1 =  { \tan}^{2}  \theta \:  \:  \\  \:  \:  \:  \:  \:  \: 1 +  { \tan }^{2} \theta =  { \sec }^{2} \theta   \\  \\  \rightarrow \:  \frac{2 { \tan}^{2}  \theta +  \: 2 \sec( \theta)  \tan( \theta)\: }{2 { \sec }^{2} \theta \:  +2 \sec( \theta)  \tan( \theta) \:  }

For next step please refer to the attachment,

Attachments:
Similar questions