Math, asked by bushrafatima3913, 1 year ago

If p sin theta +q cos theta =a and p cos theta -q cos theta =b then p+a/q+b+q-b/p-a is equal to?

Answers

Answered by MaheswariS
71

Answer:

\frac{p+a}{q+b}+\frac{q-b}{p-a}=0

Step-by-step explanation:

Formula used:

cos^2\theta+sin^2\theta=1

(a+b)^2=a^2+b^2+2ab

(a-b)^2=a^2+b^2-2ab

Given:

p\:sin\theta+q\:cos\theta=a......(1)

p\:cos\theta-q\:sin\theta=b........(2)

squaring and adding (1) and (2), we get

(p\:sin\theta+q\:cos\theta)^2+(p\:cos\theta-q\:sin\theta)=a^2+b^2

p^2\:sin^2\theta+q^2\:cos^2\theta+2pq\:cos\theta\:sin\theta+p^2\:cos^2\theta+q^2\:sin^2\theta-2pq\:cos\theta\:sin\theta=a^2+b^2

p^2\:sin^2\theta+q^2\:cos^2\theta+p^2\:cos^2\theta+q^2\:sin^2\theta=a^2+b^2

p^2(sin^2\theta+cos^2\theta)+q^2(cos^2\theta+sin^2\theta)=a^2+b^2

p^2(1)+q^2(1)=a^2+b^2

p^2+q^2=a^2+b^2............(3)

Now,

\frac{p+a}{q+b}+\frac{q-b}{p-a}

=\frac{(p+a)(p-a)+(q+b)(q-b)}{(q+b)(p-a)}

=\frac{p^2-a^2+q^2-b^2}{(q+b)(p-a)}

=\frac{(p^2+q^2)-(a^2+b^2)}{(q+b)(p-a)}

=\frac{(a^2+b^2)-(a^2+b^2)}{(q+b)(p-a)}  ( using (3) )

=\frac{0}{(q+b)(p-a)}

=0

Answered by Swas1234
7

Answer:

H

Step-by-step explanation:

Attachments:
Similar questions