Math, asked by gurmangrewal1034, 1 year ago

If p =(tan (3^n+1 theta)-tan theta) and q=sigma n r=0 sin (3^r theta)÷cos (3^r+1 theta) then

Answers

Answered by pulakmath007
11

SOLUTION

GIVEN

\displaystyle  \sf{p = (  \tan ({ 3}^{n + 1} \theta)   -\tan  \theta \: ) \: \:  \:  \: and \:  \:  \: q =  \sum\limits_{r=0}^{n}  \:  \frac{ \sin ({ 3}^{r} \theta)}{ \cos ({ 3}^{r + 1} \theta)} }

TO DETERMINE

The relation between p and q

EVALUATION

Here it is given that

\displaystyle  \sf{p = (  \tan ({ 3}^{n + 1} \theta)   -\tan  \theta \: ) }

\displaystyle  \sf{q =  \sum\limits_{r=0}^{n}  \:  \frac{ \sin ({ 3}^{r} \theta)}{ \cos ({ 3}^{r + 1} \theta)} }

\displaystyle  \sf{Let \:  \:  \alpha  = { 3}^{r} \theta }

Now

\displaystyle  \sf{\frac{ \sin ({ 3}^{r} \theta)}{ \cos ({ 3}^{r + 1} \theta)} }

\displaystyle  \sf{ = \frac{ \sin ({ 3}^{r} \theta)}{ \cos (3.{ 3}^{r } \theta)} }

\displaystyle  \sf{ = \frac{ \sin  \alpha }{ \cos 3 \alpha } }

\displaystyle  \sf{ = \frac{ 2\sin  \alpha \cos  \alpha}{ 2\cos 3 \alpha \cos  \alpha} }

\displaystyle  \sf{ = \frac{ \sin  2\alpha }{ 2\cos 3 \alpha \cos  \alpha} }

\displaystyle  \sf{ = \frac{ \sin  (3\alpha  -  \alpha)}{ 2\cos 3 \alpha \cos  \alpha} }

\displaystyle  \sf{ = \frac{ \sin  3\alpha \cos  \alpha -  \cos  3\alpha \sin  \alpha}{ 2\cos 3 \alpha \cos  \alpha} }

\displaystyle  \sf{ =  \frac{1}{2} \bigg[\frac{ \sin  3\alpha \cos  \alpha -  \cos  3\alpha \sin  \alpha}{ 2\cos 3 \alpha \cos  \alpha}  \bigg]}

\displaystyle  \sf{ =  \frac{1}{2} \bigg[\frac{ \sin  3\alpha \cos  \alpha }{ \cos 3 \alpha \cos  \alpha}   - \frac{ \cos  3\alpha \sin  \alpha}{ \cos 3 \alpha \cos  \alpha}\bigg]}

\displaystyle  \sf{ =  \frac{1}{2} \bigg[ \tan  3\alpha  - \tan  \alpha\bigg]}

\displaystyle  \sf{ =  \frac{1}{2} \bigg[ \tan  { 3}^{r + 1} \theta  - \tan  { 3}^{r} \theta\bigg]}

Thus we get

\displaystyle  \sf{q =  \sum\limits_{r=0}^{n}  \:  \frac{ \sin ({ 3}^{r} \theta)}{ \cos ({ 3}^{r + 1} \theta)} }

\displaystyle  \sf{ \implies \: q =  \sum\limits_{r=0}^{n}  \:\frac{1}{2} \bigg[ \tan  { 3}^{r + 1} \theta  - \tan  { 3}^{r} \theta\bigg]}

\displaystyle  \sf{ \implies \: q =  \frac{1}{2} \bigg[ \tan  { 3}^{n + 1} \theta  - \tan  { 3}^{0} \theta\bigg]}

\displaystyle  \sf{ \implies \: q =  \frac{1}{2} \bigg[ \tan  { 3}^{n + 1} \theta  - \tan   \theta\bigg]}

\displaystyle  \sf{ \implies \: q =  \frac{1}{2}  \times p}

\displaystyle  \sf{ \implies \: q =  \frac{p}{2}  }

\displaystyle  \sf{ \implies \: p = 2q}

FINAL ANSWER

Hence the required relationship is

 \boxed{ \: \displaystyle  \sf{ \pink{ \:  p = 2q}} \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions