Math, asked by jainlavya245, 11 months ago

If p(x) =2x²-3x+7 then find the value of alpha ²-beta²

Answers

Answered by kaushik05
25

 \huge \pink{ \mathfrak{soultion}}

Given :

p(x)=

2 {x}^{2}  - 3x + 7

Here,

a= 2

b=-3

c=7

As we know that

 \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - ( - 3)}{2}  =  \frac{3}{2}

and

 \alpha  \beta  =  \frac{c}{a}  =  \frac{7}{2}  \\  \\

To find :

 \leadsto { \alpha }^{2}  -  { \beta }^{2}  \\  \\  \rightarrow \: ( \alpha  +  \beta )( \alpha  -  \beta ) \\  \\   \rightarrow( \alpha  +  \beta )( \sqrt{( \alpha  +  \beta )^{2}  - 4 \alpha  \beta } ) \\  \\  \rightarrow \: ( \frac{3}{2} )( \sqrt{ (\frac{3}{2})^{2}   - 4 \times  \frac{7}{2} }  )\\  \\  \rightarrow( \frac{3}{2} )( \sqrt{ \frac{9}{4} - 14 } ) \\  \\  \rightarrow \:  \frac{3}{2}  \sqrt{  \frac{ - 47}{4} } \\  \\  \rightarrow \:  \frac{3}{2} ( \frac{47i}{2} ) \\  \\  \rightarrow \:  \frac{3 \times 47i}{4}

-1=i

Answered by Anonymous
27

SOLUTION:-

Given:

If p(x)=2x²-3x+7.

To find:

The value of α² -β².

Explanation:

We know that formula of the α² - β²,

⇒ (α+β)(α-β)=(α+β)√(α+β)²-4αβ

&

We can compare with the equation Ax² +Bx+C.

  • A= 2
  • B= -3
  • C= 7

Here,

  • Sum of the zeroes:

⇒ α+β= \frac{-b}{a}

⇒ α+β= \frac{-(-3)}{2}

⇒ α+β= \frac{3}{2}

  • Product of the zeroes:

⇒ αβ= \frac{c}{a}

⇒ αβ= \frac{7}{2}

Now, putting the value of the above formula:

alpha² - beta² = (α+β)√(α+β)²-4αβ

\frac{3}{2} \sqrt{(\frac{3}{2} )^{2} -4* \frac{7}{2} } \\\\\frac{3}{2} \sqrt{\frac{9}{4} -\frac{28}{2} }

\frac{3}{2} \sqrt{\frac{9-56}{4} } \\\\\frac{3}{2} \sqrt{\frac{-47}{4} } \\\frac{3}{2} *\frac{\sqrt{-47} }{2} \\\frac{3*\sqrt{-47} }{4}.

Thus,

3×47i/4           [i=√-1]

Remark;

The formal definition of i is i^2=-1 and not √-1=i,

Similar questions