If P(x) = 2x³ + 2x² + bx - 6 leaves remainder 36, when divided by (x-3) , find the value of b and hence factorise P(x).
Answers
We have, p(x) = 2x^3 + 2x^2 + bx - 6,
And when, p(x) is divided by (x - 3) it leaves a remainder 36.
So, by using
p(3) = 2(3)^3 + 2(3)^2 + b(3) - 6 = 36
Or, 54 + 18 + 3b - 6 = 36
Or, 3b = 36 - 66 = - 30
Or, b = - 30/3 = - 10
➡️
Now, we need to factorise p(x)
So, we have
p(x) = 2x^3 + 2x^2 + (- 10)x - 6 - 36
= 2x^3 + 2x^2 - 10x - 42
= 2x^3 - 6x^2 + 8x^2 - 24x + 14x - 42
= 2x^2(x - 3) + 8x(x - 3) + 14(x - 3)
= (x - 3)(2x^2 + 8x + 14)
= 2(x - 3)(x^2 + 4x + 7)
That's it..
Answer :-
Given polynomial P(x) = 2 x³ + 2 x² + b x - 6 .
When divided by ( x-3 ) P(x) leaves a remainder 36 .
According to the remainder theorem :
If ( x - a ) leaves a remainder y then f (a) = y
Applying the above theorem :
P(3) = 36
P(x) = 2 x³ + 2 x² + b x - 6
⇒ P(3) = 2(3)³ + 2(2)² + b(2) - 6
⇒ 36 = 2 × 27 + 2 × 4 + 2b - 6
⇒ 54 + 8 + 2b - 6 = 36
⇒ 56 + 2b = 36
⇒ 2b = 36 - 56
⇒ 2b = - 20
⇒ b = -20/2
⇒ b = - 10
The value of b is - 10 .
So the original equation becomes 2 x³ + 2 x² - 10 x - 6
Since the function P(x) leaves remainder 36 when divided by x - 3 :-
P(x) - 36 is a factor of x - 3 .
⇒ 2 x³ + 2 x² - 10 x - 6 - 36
⇒ 2 x³ + 2 x² - 10 x - 42 is a factor of x - 3
⇒ 2 ( x³ + x² - 5 x - 21 )
Split these terms :-
⇒ 2 ( x³ - 3 x² + 4 x² - 12 x + 7 x - 21 )
⇒ 2 ( x²( x - 3 ) + 4 x ( x - 3 ) + 7 ( x - 3 )
⇒ 2 ( x² + 4 x + 7 )( x - 3 )
This was done by subtracting 36 from it .
Hence P(x) - 36 = 2 ( x² + 4 x + 7 )( x - 3 )
⇒ P(x) = 2 ( x² + 4 x + 7 )( x - 3 ) + 36
⇒ P(x) = 2 [ ( x² + 4 x + 7 )( x - 3 ) + 18 ]
Hence P(x) is factorized .