if p(x)=4+3x-x²+5x³, find: (I)p(0)
(ii) p(2) (iii) p(-1)
Answers
Step-by-step explanation:
p(0) = 4+ 3(0)-0²+5(0)³= 4+0-0+0 = 4
p(2) = 4 +3(2)-(2)²+ 5(2)³ = 4+6-4+5(8) = 4+6-4+40= 46
p(-1) = 4 +3(-1)-(-1)²+5(-1)³= 4-3-1-5 = 4-9 = -5
Step-by-step explanation:
Given :-
p(x)=4+3x-x^2 +5x^3
To find:-
find the following :
(i)p(0)
(ii) p(2)
(iii) p(-1)
Solution :-
.
Given Polynomial is p(x)=4+3x-x^2 +5x^3
On writing it in the standard form
=> P(x) = 5x^3-x^2+3x+4
(i)p(0):-
P(x) = 5x^3-x^2+3x+4
Put x = 0 then
=> P(0) = 5(0)^3-(0)^2+3(0)+4
=> P(0) = 5(0)-0+0+4
=> P(0) = 0-0+0+4
=> P(0) = 4
Therefore , P(0) = 4
(ii) p(2) :-
P(x) = 5x^3-x^2+3x+4
Put x = 2 then
=> P(2) = 5(2)^3-(2)^2+3(2)+4
=> P(2) = 5(8)-4+6+4
=> P(2) = 40-4+6+4
=> P(2) = 40+6
=> P(2) = 46
Therefore , P(2) = 46
(iii) p(-1):-
P(x) = 5x^3-x^2+3x+4
Put x = -1 then
=> P(-1) = 5(-1)^3-(-1)^2+3(-1)+4
=> P(-1) = 5(-1)-(1)+(-3)+4
=> P(-1) = -5-1-3+4
=> P(-1) = -9+4
=> P(-1) = -5
Therefore , P(-1) = -5
Answer:-
The value of P(0) = 4
The value of P(2) = 46
The value of P(-1) = -5