Math, asked by rinaroselinasoren, 5 months ago


If P (x) = ax²+bx+c and a+b+c =0, than one zero is ?​

Answers

Answered by Anonymous
6

\mathfrak{\huge\underline{Answer:}}

x=1 is one of the zero of p(x) .

Step-by-step explanation:

Given p(x)= ax²+bx+c

The above mentioned equation is in the quadratic form

a+b+c =0

Consider the given eqn

p(x)= ax²+bx+c

The above mentioned equation is the general form of the polynomial where a, b, c are variables and x is a constant

Put x=1 in the above equation we get

p(1)=a+b+c

But we know that a+b+c = 0

Therefore p(1) =0

So when x =1 p(1) =0

Therefore x = 1 is the root of p(x)

x = 1 is one of the zero of p(x)

Here p represents the polynomial

\huge\fbox\red{HOPE\:IT\: HELPS\: YOU}


Anonymous: superb!
Answered by Anonymous
40

 \huge  \underline \colorbox{red}{given}

 =   > a + c = b

 \huge \colorbox{green}{we \: have}

 =  > p(x) = ax^{2}  + bx + c \\  \\  =  > p(x) =  {ax}^{2}  + (a + c)x + c \\ \\   =  > p(x) =  {ax}^{2}  + ax + cx + c \\ \\   =  > p(x) = ax(x + 1)(ax + c) \\ \\   =  > p(x) = (x + 1)(ax + c)

==》Then by making p(x)=0, we get :-

x + 1 = 0 \colorbox{red}{and} \: ax + c = 0 \\  \\   = =  > x =  - 1  \:  \:  \: \colorbox{cyan}{and} \: \:  \:  x =  \frac{ - c}{a}

 \huge\bf \underline \colorbox{cyan}{alternate \: method}

Given

 \ =  > a + c = b

Now , we have

 =  > p(x) =  {ax}^{2} + bx + c

 \bf\underline{let \: \:   \alpha  \: and \: b \: \:  are \ \: : the \: \:  zeros \: \:  of \: \:  this \: \:  polynomial   \:  \:p(x) =  {ax}^{2}  + bx + c}

we know that :-

 \alpha  +  \beta  =  \frac{ -  \beta }{a} \colorbox{red}{and} \:  \alpha b =  \frac{ - c}{a}  \\ \\  \bf \for \: finding \: ( \alpha  -  \beta ) \\ \\   =  > ( \alpha  -  \beta ) ^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  - 2 \alpha  \beta \\  \\  =  > ( \alpha  -  \beta )^{2} = ( { \alpha }^{2} +  { \beta }^{2}) - 2 \alpha  \beta - 2 \alpha  \beta  \\  \\  =  > ( \alpha  -  \beta )^{2} = ( \alpha  +  \beta )^{2}  - 4 \alpha  \beta

Substituting the values on R.H.S:--

 =  > ( \alpha  -  \beta )^{2} =  ({ \frac{ - b}{a}) }^{2} -4( \frac{c}{a} ) \\ \\   =  >  {( \alpha  -  \beta )}^{2}  =  \frac{ {b}^{2} }{a} -  \frac{4c}{a} \\ \\   =  >  {( \alpha  -  \beta )}^{2} =  \frac{ {b}^{2} }{ {a}^{2} } -  \frac{4c}{a} \\ \\   =  > {( \alpha  -  \beta )}^{2} = \frac{ {b } ^{2 -}4ac }{ {a}^{2} } \\  \\  =  >  {( \alpha  -  \beta )}^{2} = \frac{(a + c)^{2} - 40c }{ {a}^{2} } \\  =  > ( \alpha  -  \beta )^{2} = \frac{ {(a - c)}^{2} }{ {a}^{2} } \\ \\   =  >  \alpha  -  \beta  =  \frac{(a - c)}{a}

 \bf \then \: adding \:  \:  \alpha  +  \beta  =  \frac{ - b}{a}

 \alpha  -  \beta  =  \frac{a - c}{a}

 = >  \alpha  +  \beta  +  \alpha  -  \beta  =  \frac{ - b}{a} +  \frac{a - c}{a}  \\ \\   =  > 2 \alpha  =  \frac{ - (a + c)}{a} +  \frac{a - c}{a}  \\ \\   =  > 2 \alpha  =  \frac{ - a - c + a + c}{ \alpha }  \\ \\   =  > 2 \alpha  =  \frac{ - 2c}{a}  \\  \\  =  >  \alpha  =  \frac{ - c}{a}

 \alpha  \beta  =  \frac{c}{a }  \\ \\    =  > \frac{ - c}{a} \times  \beta  =  \frac{c}{a}  \\ \\  =  >  \beta  =  - 1

Thus the zeroes of the polynomial p(x)= ax²+bx+c are :-

  \huge \bf\frac{ - c}{a}   \:  \: \colorbox{cyan}{and} \:  - 1

Similar questions